Patents by Inventor David Scott Thompson

David Scott Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230158777
    Abstract: A display film includes a transparent glass layer having a thickness of 250 micrometers or less, or in a range from 25 to 100 micrometers. A transparent energy dissipation layer is fixed to the transparent glass layer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater, or from 1 to 2.
    Type: Application
    Filed: January 11, 2023
    Publication date: May 25, 2023
    Inventors: Joseph W. Woody, V, David Scott Thompson, Catherine A. Leatherdale, Ryan M. Braun, Michael A. Johnson, Steven D. Solomonson, John J. Stradinger, Lyudmila A. Pekurovsky, Joseph D. Rule, Peter D. Condo
  • Patent number: 11659069
    Abstract: A method, gateway device, computer and computer program product for monitoring responder interaction with equipment and credentialing of a responder are provides. A gateway device includes a memory and a processor. The memory is configured to store responder credentials and equipment data. The processor is in communication with the memory and is configured to translate equipment data received from equipment in a first format according to a first protocol to a second format according to a second protocol, the translated equipment data to be relayed to a computer. The processor is also configured to register equipment data in the memory. The gateway device also includes a transceiver configured to receive the equipment data from external equipment, transmit responder credentials to the computer and transmit the translated equipment data to the computer.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: May 23, 2023
    Assignee: Scott Technologies, Inc.
    Inventors: Longin James Kloc, Michael Scott Sabolcik, Kimberly Michelle Henry, Darin Kyle Thompson, David M. Barbarine
  • Patent number: 11631829
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent energy dissipation layer disposed on the transparent polymeric substrate layer. The transparent energy dissipation layer includes cross-linked polyurethane and a polyacrylate polymer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 18, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Karissa L. Eckert, David Scott Thompson, Ryan M. Braun, Catherine A. Leatherdale, Michael A. Johnson, Steven D. Solomonson, Richard J. Pokorny, John J. Stradinger, Kevin R. Schaffer, Joseph D. Rule, Peter D. Condo, Derek W. Patzman
  • Publication number: 20230107275
    Abstract: A nanocomposite includes at least one polymer and metal oxide nanoparticles dispersed in the at least one polymer. Each polymer can have a number average molecular weight of at least 10000 grams/mole. The at least one polymer includes a first polymer including (meth)acrylic acid monomer units. The metal oxide nanoparticles are surface modified with a carboxylic acid silane surface modifying agent. An aqueous dispersion that can be used to make the nanocomposite and a method of making the nanocomposite is described.
    Type: Application
    Filed: January 28, 2021
    Publication date: April 6, 2023
    Inventors: Peter D. Condo, David Scott Thompson
  • Publication number: 20230057101
    Abstract: A multilayer film includes pluralities of first layers and polymeric second layers arranged along a thickness direction of the multilayer film. The first and second layers having different compositions. At least one layer of the multilayer film includes at least one polymer and metal oxide nanoparticles dispersed in the at least one polymer. The at least one polymer includes a first polymer including (meth)acrylic acid monomer units. The metal oxide nanoparticles are surface modified with a carboxylic acid silane surface modifying agent.
    Type: Application
    Filed: January 25, 2021
    Publication date: February 23, 2023
    Inventors: Peter D. Condo, David Scott Thompson
  • Patent number: 11577492
    Abstract: A display film includes a transparent glass layer having a thickness of 250 micrometers or less, or in a range from 25 to 100 micrometers. A transparent energy dissipation layer is fixed to the transparent glass layer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less, a Tan Delta peak value of 0.5 or greater, or from 1 to 2 and a Young's Modulus (E?) greater than 0.9 MPa over a temperature range of ?40 degrees Celsius to 70 degrees Celsius. In a preferred embodiment, the transparent energy dissipation layer comprises a cross-linked polyurethane layer or a cross-linked polyurethane acrylate layer.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 14, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph W. Woody, V, David Scott Thompson, Catherine A. Leatherdale, Ryan M. Braun, Michael A. Johnson, Steven D. Solomonson, John J. Stradinger, Lyudmila A. Pekurovsky, Joseph D. Rule, Peter D. Condo
  • Patent number: 11440302
    Abstract: A display film includes a transparent polymeric substrate layer having a 0.2% offset yield stress greater than 110 MPa and a transparent aliphatic cross-linked polyurethane layer having a thickness of 100 micrometers or less disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 2% or less.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: September 13, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Catherine A. Leatherdale, David Scott Thompson, Michael A. Johnson, John J. Stradinger, Evan L Breedlove, Steven D. Solomonson, Joseph D. Rule, Peter D. Condo
  • Publication number: 20220220333
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: July 14, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20220213332
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: July 7, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20220195217
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a population of semi-reactive nanoparticles dispersed within the one or more multifunctional (meth)acrylate monomers. The population of semi-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: June 23, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 10738172
    Abstract: A display panel assembly is made by optically bonding a display panel and a substantially transparent substrate.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 11, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Robert S. Davidson, David A. Berry, Huang Chin Hung, Audrey A. Sherman
  • Publication number: 20200150789
    Abstract: A display film includes a transparent energy dissipation layer having a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater, and a transparent conductor layer disposed on the transparent energy dissipation layer. The conductive display films including transparent conductors and a flexible substrate that can protect a display window and survive folding tests intact while maintaining the desired electric conductive properties.
    Type: Application
    Filed: July 19, 2018
    Publication date: May 14, 2020
    Inventors: Joseph W. WOODY, V, David Scott THOMPSON, Matthew S. STAY, Michael A. JOHNSON, Daniel J. THEIS, Ann Marie GILMAN, Shawn C. DODDS
  • Publication number: 20200028117
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent energy dissipation layer disposed on the transparent polymeric substrate layer. The transparent energy dissipation layer includes cross-linked polyurethane and a polyacrylate polymer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Application
    Filed: November 30, 2017
    Publication date: January 23, 2020
    Inventors: Karissa L. ECKERT, David Scott THOMPSON, Ryan M. BRAUN, Catherine A. LEATHERDALE, Michael A. JOHNSON, Steven D. SOLOMONSON, Richard J. POKORNY, John J. STRADINGER, Kevin R. SCHAFFER, Joseph D. RULE, Peter D. CONDO, Derek W. PATZMAN
  • Publication number: 20200016868
    Abstract: A display film includes a transparent glass layer having a thickness of 250 micrometers or less, or in a range from 25 to 100 micrometers. A transparent energy dissipation layer is fixed to the transparent glass layer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less, a Tan Delta peak value of 0.5 or greater, or from 1 to 2 and a Young's Modulus (E?) greater than 0.9 MPa over a temperature range of ?40 degrees Celsius to 70 degrees Celsius. In a preferred embodiment, the transparent energy dissipation layer comprises a cross-linked polyurethane layer or a cross-linked polyurethane acrylate layer.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 16, 2020
    Inventors: Joseph W. WOODY, V, David Scott THOMPSON, Catherine A. LEATHERDALE, Ryan M. BRAUN, Michael A. JOHNSON, Steven D. SOLOMONSON, John J. STRADINGER, Lyudmila A. PEKUROVSKY, Joseph D. RULE, Peter D. CONDO
  • Patent number: 10371350
    Abstract: Optical systems are disclosed. More particularly, optical systems including an asymmetric turning film (110) with at least a first (120) and second light source (130) are disclosed. Selection of geometries for the asymmetric turning film can enable different output viewing angles depending on the selective illumination of the first light source, the second light source, or both. The optical systems disclosed may be suitable in both luminaires and displays.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 6, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Nicholas A. Johnson, Gilles J. Benoit, John A. Wheatley, Kenneth A. Epstein, David Scott Thompson, Michael E. Lauters
  • Publication number: 20190211168
    Abstract: A display film includes a transparent cross-linked polyurethane acrylate layer. The transparent cross-linked polyurethane acrylate layer having a glass transition temperature of 10 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Application
    Filed: June 6, 2017
    Publication date: July 11, 2019
    Inventors: David Scott THOMPSON, Steven D. SOLOMONSON, Karissa Lynn ECKERT, John James STRADINGER, Catherine A. LEATHERDALE, Peter D. CONDO, Richard J. POKORNY, Ryan M. BRAUN, Michael A. JOHNSON, Joseph D. RULE, Kevin R. SCHAFFER, Derek W. PATZMAN
  • Patent number: 10295724
    Abstract: This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 21, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Patent number: 10288254
    Abstract: This application describes a front-lit reflective display assembly including a reflective display and an illumination article for front-lighting the display when the article is optically coupled to a light source. The illumination article includes a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first and second regions, the first region comprising nanovoided polymeric material, the second region comprising the nanovoided polymeric material and an additional material, the first and second regions being disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. Front-lit reflective display devices including the front-lit reflective display assembly optically coupled to a light source are also described.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 14, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kevin R. Schaffer, David Scott Thompson, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, William J. Bryan, John A. Wheatley, Joseph W. Woody, Steven D. Solomonson, Matthew S. Stay, Mikhail L. Pekurovsky
  • Patent number: 10168460
    Abstract: An optical construction includes a quantum dot film element including a plurality of quantum dots, a first optical recycling element, and a first low refractive index element separating the quantum dot film element from the first optical recycling element. The first low refractive index element has a refractive index of 1.3 or less.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 1, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gilles J. Benoit, John A. Wheatley, James A. Thielen, David Scott Thompson
  • Patent number: 10161593
    Abstract: Lighting systems and devices include a light-transmissive tube and a light source assembly. The light-transmissive tube defines a cavity that extends along a longitudinal axis, at least a portion of the tube having an inner structured surface facing the cavity, and an outer structured surface facing away from the cavity. The light source assembly is disposed to inject light into the cavity, and includes one or more discrete light sources such as LED sources. The inner and outer structured surfaces of the tube are configured to direct a first portion of the injected light out of the tube through the outer structured surface and to direct a second portion of the injected light back into the cavity, such that a virtual filament, or pattern of virtual filaments, appears in the tube.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: December 25, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert Bennett, David Scott Thompson, John A. Wheatley, Gilles J. Benoit