Patents by Inventor David Shepard

David Shepard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210403334
    Abstract: A method of forming AEI-type zeolites in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the presence of an FAU zeolite NaY with SAR ?5, a Y zeolite with a SAR ?5, or a combination thereof. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), and alkali metal ions; zeolite seeds; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 18:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.13:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 200° C. for 10 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 15:1.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 30, 2021
    Inventors: Yunkui Li, De Gao, David Shepard, Wei Wu, Jeffery Lachapelle, Geng Zhang
  • Publication number: 20210394165
    Abstract: A method of forming an AFX zeolite in a hydrothermal synthesis that exhibits a silica to alumina (SiO2AI2O3) molar ratio (SAR) that is between 8:1 and 26:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This AFX zeolite also exhibits a Brönsted acidity that is in the range of 1.2 mmol/g to 3.6 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite exhibits about a 100% conversion of NO emissions over the temperature range of 300° C. to 650° C.
    Type: Application
    Filed: November 8, 2019
    Publication date: December 23, 2021
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Publication number: 20210339233
    Abstract: A method of forming an SSZ-13 zeolite in a hydrothermal synthesis yields an SSZ-13 zeolite that exhibits a silica to alumina (SiO2:Al2O3) molar ratio (SAR) that is less than 16:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This SSZ-13 also exhibits a Brönsted acidity that is in the range of 2.0 mmol/g to 3.4 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite provides for low temperature light-off of the NOx conversion reactions, while maintaining substantial performance at higher temperatures demonstrating hydrothermal stability.
    Type: Application
    Filed: October 24, 2019
    Publication date: November 4, 2021
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Publication number: 20210323832
    Abstract: A method of forming an AEI-type zeolite in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the absence of any FAU zeolite Y. A gel composition formed upon using this method includes one or more sources of silica; one or more sources of alumina, one or more organic structure directing agents (OSDA); a source of alkali metal ions; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 16:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.20:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 180° C. for 15 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 8:1.
    Type: Application
    Filed: August 23, 2019
    Publication date: October 21, 2021
    Inventors: Yunkui Li, David Shepard, De Gao, Wei Wu, Jeffery Lachapelle, Geng Zhang
  • Publication number: 20210300778
    Abstract: A nanocrystal-sized cerium-zirconium mixed oxide material includes at least 30% by mass zirconium oxide; between 5% to 55% by mass cerium oxide; and a total of 25% or less by mass of at least one oxide of a rare earth metal selected from the group of lanthanum, neodymium, praseodymium, or yttrium. The nanocrystal-sized cerium-zirconium mixed oxide exhibits hierarchically ordered aggregates having a d50 particle size less than 1.5 ?m and a total pore volume after calcination at a temperature of 600° C. or more that is at least 0.7 cm3/g with a fraction of pores between 2 nm to 10 nm being less than 15%. The nanocrystal-sized cerium-zirconium mixed oxide material is prepared using a co-precipitation method followed by milling the dried and calcined oxide material. The nanocrystal-sized cerium-zirconium mixed oxide material forms a particulate filter that may be used in an exhaust system arising from a gas or diesel engine.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Anatoly Bortun, David Shepard, Jin Cho, Mila Bortun, Yunkui Li, Wei Wu, Jeffery Lachapelle
  • Publication number: 20210275289
    Abstract: The present disclosure describes methods of treating an injury in a subject using placental tissue streamers, engineered tissue placental tissue hybrids, suture placental tissue hybrids, placental tissue patch hybrids, and tissue hybrids, and the use of these compositions to repair, treat, or support an injury or degenerative process in a subject.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 9, 2021
    Applicant: ARTHREX, INC.
    Inventors: David SHEPARD, John Tokish, Brian Dorn
  • Publication number: 20210273293
    Abstract: A cell for use in an electrochemical cell, such as a lithium-ion secondary battery that includes a positive electrode with an active material that acts as a cathode and a current collector; a negative electrode with an active material that acts as an anode and a current collector; a non-aqueous electrolyte; and a separator placed between the positive and negative electrodes. At least one of the cathode, the anode, the electrolyte, and the separator includes an inorganic additive in the form of one or more zeolites having a Si:Al ratio ranging from 2-50 that absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride that become present in the cell. One or more of the cells may be combined in a housing to form a lithium-ion secondary battery. The inorganic additive may also be incorporated as a coating applied to the internal wall of the housing.
    Type: Application
    Filed: October 30, 2020
    Publication date: September 2, 2021
    Inventors: Shuang Gao, David Shepard, Yunkui Li, Anatoly Bortun
  • Publication number: 20210210762
    Abstract: A negative electrode for use in an electrochemical cell, such as a lithium-ion secondary battery that includes a positive electrode with an active material that acts as a cathode and a current collector; a negative electrode with an active material that acts as an anode and a current collector; a non-aqueous electrolyte; and a separator placed between the positive and negative electrodes. The negative electrode, includes an inorganic additive dispersed therein or applied as a coating thereon, the inorganic additive being in the form of one or more zeolites having a Si:Al ratio ranging from 1-50 that absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride that become present in the cell. One or more of the cells may be combined in a housing to form a lithium-ion secondary battery.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 8, 2021
    Inventors: Shuang Gao, David Shepard, Yunkui Li, Anatoly Bortun
  • Patent number: 10987209
    Abstract: The present disclosure describes methods of treating an injury in a subject using placental tissue streamers, engineered tissue placental tissue hybrids, suture placental tissue hybrids, placental tissue patch hybrids, and tissue hybrids, and the use of these compositions to repair, treat, or support an injury or degenerative process in a subject.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: April 27, 2021
    Assignee: ARTHREX, INC.
    Inventors: David Shepard, John Tokish, Brian Dorn
  • Publication number: 20210069680
    Abstract: An oxygen storage material (OSM) that exhibits enhanced redox properties, developed mesoporosity, and a resistance to sintering. The oxygen storage material (OSM) has a high oxygen storage capacity (i.e., OSC>1.5 mmol H2/g) and enhanced reducibility (i.e., bimodal TPR-H2 profile with two Tmax in the temperature range from 150° C. to 550° C.). The OSM is suitable for use as a catalyst and a catalyst support. The method of making the oxygen storage material comprises the preparation of a solution containing zirconium, cerium, rare earth and transition metal salts, followed by the co-precipitation of all constituent metal hydroxides with a base.
    Type: Application
    Filed: January 7, 2019
    Publication date: March 11, 2021
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Publication number: 20210071558
    Abstract: A method of making an oxygen storage material (OSM) with developed mesoporosity having a small fraction of pores <10 nm (fresh or aged), and resistance to thermal sintering is provided. This OSM is suitable for use as a catalyst and catalyst support. The method of making this oxygen storage material (OSM) includes the preparation of a solution containing pre-polymerized zirconium oligomers, cerium, rare earth and transition metal salts; the interaction of this solution with a complexing agent that has an affinity towards zirconium; the formation of a zirconium-based precursor; and the co-precipitation of all constituent metal hydroxide with abase.
    Type: Application
    Filed: January 7, 2019
    Publication date: March 11, 2021
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Patent number: 10882755
    Abstract: Mesoporous, zirconium-based mixed oxides and a method of making the same comprises: injecting a polyvalent metal-containing solution into an electrolyte solution to form a mother liquor; forming a precipitate; aging the precipitate in the mother liquor to form the mixed oxides; washing the mixed oxides with an aqueous medium; drying and collecting the mixed oxides. The pH of the electrolyte solution exceeds the isoelectric point for zirconium-based mixed oxides. The mixed oxides exhibit a single particle size distribution, improved Ce02 reducibility in the presence of Rhodium, a decrease in surface area after calcination (800-1100° C.) that is not more than 55%, and a tetragonal/cubic structure after calcination. After calcination at 1100° C. for 10 hours in air, the mixed oxides exhibit a surface area >25 m2/g, a pore volume >0.20 cm3/g, an average pore size >30 nm, and an average crystallite size between 8-15 nm.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 5, 2021
    Assignee: Pacific Industrial Development Corporation
    Inventors: Anatoly Bortun, David Shepard, Yunkui Li, Wei Wu, Jeffery Lachapelle
  • Patent number: 10792403
    Abstract: A surgical method according to an exemplary aspect of the present disclosure includes, among other things, drying an osteochondral defect using a suction swab. The drying step includes suctioning moisture from the osteochondral defect through the suction swab or communicating a gas to the osteochondral defect through the suction swab.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 6, 2020
    Assignee: ARTHREX, INC.
    Inventors: Robert Benedict, Brandon Roller, James R. McWilliam, Frank Grimaldi, Jr., David Shepard
  • Publication number: 20200307904
    Abstract: An apparatus, system and method for securing wheeled shipping carts within a shipping container. The apparatus, system and method for securing wheeled shipping carts within a shipping container secures the shipping racks across the width of the container and vertically, and then end-to-end inside the length of the container from the fixed end of the container to the doors as the container is loaded. In addition, the system and method secures wheeled shipping carts within a shipping container using a securing apparatus installed within the shipping container to constrain the wheeled shipping carts both vertically and horizontally in location during transport.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Applicant: Globe Composite Solutions, LLC
    Inventors: Brian Charles EVANS, David Shepard FARNSWORTH
  • Patent number: 10747659
    Abstract: The present disclosure, in various embodiments, describes technologies and techniques for use by a memory controller or similar device for storing sequential image data or other data streams composed of pages of data. In one example, the memory controller compares data within current and previous image frames on a page-by-page basis. If a pair of pages match, the memory controller creates a link between the two pages so the duplicate page need not be stored. During a subsequent read operation, the flash controller accesses stored links to identify the physical storage addresses of any matching pages stored in connection with a previous frame to permit efficient retrieval. In some examples, a page is compared with both the previous corresponding page and with the neighboring pages of that previous page. Exemplary read, write and erase operations are described herein using the links.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: August 18, 2020
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Weijie Yu, Rohit Sehgal, Zachary David Shepard
  • Patent number: 10702849
    Abstract: An inorganic oxide material doped with nano-rare earth oxide particles that is capable of trapping one or more of NOx or SOx at a temperature that is less than 400° C. The nano-rare earth oxide particles have a particle size that is less than 10 nanometers. The catalyst support can trap at least 0.5% NO2 at a temperature less than 350° C. and/or at least 0.4% SO2 at a temperature less than 325° C. The catalyst support can trap at least 0.5% NO2 and/or at least 0.2% SO2 at a temperature that is less than 250° C. after being aged at 800° C. for 16 hours in a 10% steam environment. The catalyst support exhibits at least a 25% increase in capacity for at least one of NOx or SOx trapping at a temperature that is less than 400° C. when compared to a conventional rare earth doped support in a 10% steam environment.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 7, 2020
    Assignee: Pacific Industrial Development Corporation
    Inventors: David Shepard, Christopher Zyskowski, Jessica Brown, Jeffery Lachapelle, Wei Wu
  • Publication number: 20190381477
    Abstract: An inorganic oxide material doped with nano-rare earth oxide particles that is capable of trapping one or more of NOx or SOx at a temperature that is less than 400° C. The nano-rare earth oxide particles have a particle size that is less than 10 nanometers. The catalyst support can trap at least 0.5% NO2 at a temperature less than 350° C. and/or at least 0.4% SO2 at a temperature less than 325° C. The catalyst support can trap at least 0.5% NO2 and/or at least 0.2% SO2 at a temperature that is less than 250° C. after being aged at 800° C. for 16 hours in a 10% steam environment. The catalyst support exhibits at least a 25% increase in capacity for at least one of NOx or SOx trapping at a temperature that is less than 400° C. when compared to a conventional rare earth doped support in a 10% steam environment.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 19, 2019
    Inventors: David Shepard, Christopher Zyskowski, Jessica Brown, Jeffery Lachapelle, Wei Wu
  • Publication number: 20190343619
    Abstract: The present disclosure describes methods of treating an injury in a subject using placental tissue streamers, engineered tissue placental tissue hybrids, suture placental tissue hybrids, placental tissue patch hybrids, and tissue hybrids, and the use of these compositions to repair, treat, or support an injury or degenerative process in a subject.
    Type: Application
    Filed: May 28, 2019
    Publication date: November 14, 2019
    Inventors: David Shepard, John Tokish, Brian Dorn
  • Publication number: 20190336954
    Abstract: A crystalline, core-shell hybrid Chabazite (CHA) material for use as a catalyst has a core with a silicon to aluminum ratio (SAR) that is less than 25 and a shell that at least partially encapsulates the core, the shell having an SAR of about 25 or greater. The crystalline, core-shell hybrid Chabazite is prepared by forming a first chabazite (CHA) material having a silicon to aluminum ratio (SAR) that is less than 25, placing the first CHA material into an aqueous reaction mixture comprising one or more precursors capable of forming a second chabazite (CHA) material having an SAR that is 25 or greater, growing the second CHA material on the surface of the first CHA material, and collecting the core-shell hybrid CHA material.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Inventors: Wei Wu, Geng Zhang, De Gao, David Shepard, Yunkui Li, Jeffery Lachapelle
  • Publication number: 20190243754
    Abstract: The present disclosure, in various embodiments, describes technologies and techniques for use by a memory controller or similar device for storing sequential image data or other data streams composed of pages of data. In one example, the memory controller compares data within current and previous image frames on a page-by-page basis. If a pair of pages match, the memory controller creates a link between the two pages so the duplicate page need not be stored. During a subsequent read operation, the flash controller accesses stored links to identify the physical storage addresses of any matching pages stored in connection with a previous frame to permit efficient retreival. In some examples, a page is compared with both the previous corresponding page and with the neighboring pages of that previous page. Exemplary read, write and erase operations are described herein using the links.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 8, 2019
    Inventors: Weijie Yu, Rohit Sehgal, Zachary David Shepard