Patents by Inventor David Steven Ripley

David Steven Ripley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10340963
    Abstract: Aspects of this disclosure relate tuning an impedance presented to a common port of a multi-throw switch and a tunable notch filter coupled to the common port. The impedance presented to the common port can be tuned based on an impedance associated with a throw of the multi-throw switch that is activated. According to embodiments of this disclosure, a shunt inductor in parallel with a tunable capacitance circuit can tune the impedance presented to the common port of the multi-throw switch. In certain embodiments, the tunable notch filter includes a series LC circuit in parallel with a tunable impedance circuit.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 2, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Steven Ripley, Edward F. Lawrence, Joshua Kawika Ellis
  • Patent number: 10340862
    Abstract: A power amplification system with shared common base biasing is disclosed. A method for power amplification at a controller of a power amplification system comprising a plurality of cascode amplifier sections can include receiving a band select signal indicative of one or more frequency bands of a radio-frequency input signal to be amplified and transmitted. The method may further include biasing a common base stage of each of the plurality of cascode amplifier sections, and biasing a common emitter stage of a subset of the plurality of cascode amplifier sections.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: July 2, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Philip John Lehtola, David Steven Ripley
  • Publication number: 20190199434
    Abstract: The systems and processes described herein can reduce the footprint of the internal devices of a wireless device by combining the DC-DC supply regulator with a FEM. Further, the device footprint can be further reduced by sharing the integrated DC-DC supply regulator among multiple FEMs reducing or eliminating the use of a separate DC-DC supply regulator for each FEM of a wireless device. Moreover, in certain embodiments, by integrating the DC-DC supply regulator into a 2G FEM, power efficiency can be improved for some wireless devices. For example, the DC-DC supply regulator may be used to supply power to a PA used for high-band 2G transmission functions. Using the DC-DC supply regulator can improve power efficiency compared to systems that supply the power for the high-band 2G PA directly from the power supply (e.g., the battery).
    Type: Application
    Filed: November 29, 2018
    Publication date: June 27, 2019
    Inventor: David Steven Ripley
  • Patent number: 10333470
    Abstract: Apparatus and methods for envelope tracking systems are provided. In certain configurations, an envelope tracking system includes a digital filter that generates a filtered envelope signal based on a digital envelope signal representing an envelope of a radio frequency signal, a buck converter controllable by the filtered envelope signal and including an output electrically connected to a power amplifier supply voltage, a digital-to-analog converter module including an output electrically connected to the output of the buck converter and that provides an output current, and a digital shaping and delay circuit configured to generate a shaped envelope signal based on shaping the filtered envelope signal. The shaped envelope signal controls a magnitude of the output current, and the digital shaping and delay circuit controls a delay of the shaped envelope signal to align the output of the digital-to-analog converter module and the output of the buck converter.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: June 25, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Florinel G. Balteanu, Sabah Khesbak, Yevgeniy A. Tkachenko, David Steven Ripley, Robert John Thompson
  • Patent number: 10320334
    Abstract: Embodiments disclosed herein relate to a bias circuit that uses Schottky diodes. Typically, a bias circuit will include a number of transistors used to generate a bias voltage or a bias current for a power amplifier. Many wireless devices include power amplifiers to facilitate processing signals for transmission and/or received signals. By substituting the bias circuit design with a design that utilizes Schottky diodes, the required battery voltage of the bias circuit may be reduced enabling the use of lower voltage power supplies.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 11, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventor: David Steven Ripley
  • Patent number: 10312867
    Abstract: The present disclosure relates to methods, modules and devices for detecting and preventing occurrence of a saturation state in a power amplifier. A method is disclosed for detecting a saturation condition of a power amplifier, including monitoring a first base current of a first transistor of a cascade transistor pair of the power amplifier and a second base current of a second transistor of the cascade transistor pair. The method can also include generating a current ratio based on comparing the first base current and the second base current. The method can further include determining if the current ratio exceeds or satisfies a threshold value and modifying one or more operating characteristics of the power amplifier in accordance with a determination that the current ratio exceeds or satisfies the threshold value.
    Type: Grant
    Filed: July 4, 2017
    Date of Patent: June 4, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Steven Ripley, Philip John Lehtola
  • Publication number: 20190158045
    Abstract: One aspect of this disclosure is a power amplifier module that includes a power amplifier on a substrate and a semiconductor resistor on the substrate. The power amplifier includes a bipolar transistor having a collector, a base, and an emitter. The collector has a doping concentration of at least 3×1016 cm?3 at an interface with the base. The collector also has at least a first grading in which doping concentration increases away from the base. The semiconductor resistor includes a resistive layer that that includes the same material as a layer of the bipolar transistor. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: August 16, 2018
    Publication date: May 23, 2019
    Inventors: Peter J. Zampardi, JR., Hongxiao Shao, Tin Myint Ko, Matthew Thomas Ozalas, David Steven Ripley, Philip John Lehtola
  • Patent number: 10263626
    Abstract: Apparatus and methods for tuning a voltage controlled oscillator (VCO) are provided. In one aspect, a method of auto-tuning in a phase-locked loop includes generating a VCO clock signal using a VCO coupled to a capacitor array, dividing the VCO clock signal to generate a divided clock signal using a prescaler circuit having a selectable division ratio, controlling a value of the selectable division ratio using a first counter and a second counter of a counter module, generating a phase-frequency detector feedback signal based on a division control signal M and the divided clock signal using the counter module, counting a number of cycles of the divided clock signal that occur during a calibration interval using a cycle counter of a digital processing logic circuit, and determining the value of a capacitor array control signal based on the number of cycles counted during the calibration interval.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: April 16, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hua Wang, David Steven Ripley, Bryan J. Roll
  • Patent number: 10243517
    Abstract: According to some implementations, a power amplifier (PA) includes a common emitter configured to receive a radio-frequency (RF) signal. The PA also includes a carrier amplifier coupled to the common emitter to form a carrier cascode configuration, a collector of the carrier amplifier provided with a first supply voltage. The PA further includes a peaking amplifier coupled to the common emitter to form a peaking cascode configuration, a collector of the peaking amplifier provided with a second supply voltage greater than the first supply voltage.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 26, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Philip John Lehtola, David Steven Ripley
  • Patent number: 10199930
    Abstract: A voltage converter can be switched among two or more modes to produce an output voltage tracking a reference voltage that can be of an intermediate level between discrete levels corresponding to the modes. One or more voltages generated from a power supply voltage, such as a battery voltage, can be compared with the reference voltage to determine whether to adjust the mode. The reference voltage can be independent of the power supply voltage. Further, the voltage converter may implement frequency modulation and a pulse skipping mode to improve the efficiency of switching operational states of the voltage converter.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 5, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hui Liu, Timothy James Mansheim, David Steven Ripley
  • Publication number: 20190036524
    Abstract: A switch control circuit includes a positive voltage bias node, a voltage-regulated positive supply rail coupled to the positive voltage bias node, a charge pump coupled to a charge pump supply node, and a current source positive supply rail coupled to the charge pump supply node and configured to supply the charge pump.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 31, 2019
    Inventors: Leo John WILZ, Jonathan Christian CRANDALL, David Steven RIPLEY, James Phillip YOUNG
  • Patent number: 10187023
    Abstract: Multiband power amplifier with cascode switching. A power amplification system can include a first transistor having a base configured to receive an input radio-frequency (RF) signal and having an emitter coupled to a ground potential. The power amplification system can include a plurality of second transistors. Each one of the plurality of second transistors can have a respective emitter coupled to a collector of the first transistor and can be configured to, when biased at a respective base, output an output RF signal at a respective collector. The power amplification system can further include a biasing circuit configured to bias one or more of the plurality of second transistors based on a control signal.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: January 22, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Paul Raymond Andrys, David Steven Ripley
  • Patent number: 10182403
    Abstract: A wireless device is disclosed that can support carrier aggregation uplink (“CAUL”) communication using a single wideband coupler. A single wideband coupler that can operate or support some or all of the communication bands of the wireless device can be used in conjunction with one or more diplexers and/or filters to measure the power of individual communication bands involved in the transmission process. Further, the use of a wideband coupler and switching network to measure the transmit power from the one or more transmit paths or main paths of a wireless device can reduce the size of a transceiver and reduce the insertion loss attributed to the power measurement components compared to systems that use separate measurement systems for each transmit path. The power measurement system may occur in a separate path in electrical connection with the wideband coupler, which may therefore be termed a coupler path.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 15, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventor: David Steven Ripley
  • Patent number: 10177838
    Abstract: The systems and processes described herein can reduce the footprint of the internal devices of a wireless device by combining the DC-DC supply regulator with a FEM. Further, the device footprint can be further reduced by sharing the integrated DC-DC supply regulator among multiple FEMs reducing or eliminating the use of a separate DC-DC supply regulator for each FEM of a wireless device. Moreover, in certain embodiments, by integrating the DC-DC supply regulator into a 2G FEM, power efficiency can be improved for some wireless devices. For example, the DC-DC supply regulator may be used to supply power to a PA used for high-band 2G transmission functions. Using the DC-DC supply regulator can improve power efficiency compared to systems that supply the power for the high-band 2G PA directly from the power supply (e.g., the battery).
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: January 8, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventor: David Steven Ripley
  • Publication number: 20180351457
    Abstract: A power management device is disclosed, including a first DC-DC converter coupled to a first output voltage line, a second DC-DC converter coupled to a second output voltage line, a first set of switches associated with the first DC-DC converter, and a second set of switches associated with the second DC-DC converter. The power management device may further include a controller configured to toggle one or more switches of the first set of switches and one or more switches of the second set of switches, and a multi-mode radio-frequency front-end block communicatively coupled to the controller.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 6, 2018
    Inventor: David Steven RIPLEY
  • Patent number: 10116274
    Abstract: The present disclosure relates to a system for biasing a power amplifier. The system can include a first die that includes a power amplifier circuit and a passive component having an electrical property that depends on one or more conditions of the first die. Further, the system can include a second die including a bias signal generating circuit that is configured to generate a bias signal based at least in part on measurement of the electrical property of the passive component of the first die.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: October 30, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Steven Ripley, Philip John Lehtola, Peter J. Zampardi, Jr., Hongxiao Shao, Tin Myint Ko, Matthew Thomas Ozalas
  • Publication number: 20180302036
    Abstract: Apparatus and methods for envelope tracking systems are provided. In certain configurations, an envelope tracking system includes a digital filter that generates a filtered envelope signal based on a digital envelope signal representing an envelope of a radio frequency signal, a buck converter controllable by the filtered envelope signal and including an output electrically connected to a power amplifier supply voltage, a digital-to-analog converter module including an output electrically connected to the output of the buck converter and that provides an output current, and a digital shaping and delay circuit configured to generate a shaped envelope signal based on shaping the filtered envelope signal. The shaped envelope signal controls a magnitude of the output current, and the digital shaping and delay circuit controls a delay of the shaped envelope signal to align the output of the digital-to-analog converter module and the output of the buck converter.
    Type: Application
    Filed: March 15, 2018
    Publication date: October 18, 2018
    Inventors: Florinel G. Balteanu, Sabah Khesbak, Yevgeniy A. Tkachenko, David Steven Ripley, Robert John Thompson
  • Patent number: 10103726
    Abstract: A switch bias control circuit includes a level shifter and voltage regulator circuitry configured to receive a voltage reference signal, provide a first voltage output at a first node and provide a second voltage output at a second node, the first node and the second node being at least partially isolated from one another. coupling circuitry couples the first node to the level shifter and couples the second node to a negative voltage generator.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 16, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Leo John Wilz, Jonathan Christian Crandall, David Steven Ripley, James Phillip Young
  • Patent number: 10090811
    Abstract: A system for power amplifier over-voltage protection includes a power amplifier configured to receive a system voltage, a bias circuit configured to provide a bias signal to the power amplifier, and a power amplifier over-voltage circuit configured to interrupt the bias signal when the system voltage exceeds a predetermined value, while the system voltage remains coupled to the power amplifier.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: October 2, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: David Steven Ripley, Joel Anthony Penticoff
  • Publication number: 20180269838
    Abstract: Embodiments disclosed herein relate to a bias circuit that uses Schottky diodes. Typically, a bias circuit will include a number of transistors used to generate a bias voltage or a bias current for a power amplifier. Many wireless devices include power amplifiers to facilitate processing signals for transmission and/or received signals. By substituting the bias circuit design with a design that utilizes Schottky diodes, the required battery voltage of the bias circuit may be reduced enabling the use of lower voltage power supplies.
    Type: Application
    Filed: February 14, 2018
    Publication date: September 20, 2018
    Inventor: David Steven Ripley