Patents by Inventor David T. Chang

David T. Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10697772
    Abstract: A sensor includes an acceleration or magnetic field sensitive microelectromechanical systems (MEMS) resonator, configured to oscillate in at least a first normal mode and a second normal mode. The sensor further includes: a coarse readout circuit configured to drive the first normal mode, measure a motion of the first normal mode, and derive from the measured motion a coarse measurement of the true acceleration or true external magnetic field; and a fine readout circuit configured to drive the second normal mode, measure a motion of the second normal mode, and derive from the measured motion and the coarse measurement a measurement of the difference between the true acceleration or true external magnetic field and the coarse measurement.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 30, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 10655964
    Abstract: A resonator includes an anchor, an outer stiffener ring on an outer perimeter of the resonator, and a plurality of curved springs between the anchor and the outer stiffener ring.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: May 19, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Lian X. Huang, Logan D. Sorenson, Raviv Perahia, Hung Nguyen, David T. Chang
  • Patent number: 10571267
    Abstract: An angular rate sensor. The sensor includes a Coriolis vibratory gyroscope (CVG) resonator, configured to oscillate in a first normal mode and in a second normal mode; a frequency reference configured to generate a reference signal; and a first phase control circuit. The first phase control circuit is configured to: measure a first phase difference between: a first phase target, and the difference between: a phase of an oscillation of the first normal mode and a phase of the reference signal. The first phase control circuit is further configured to apply a first phase correction signal to the CVG resonator, to reduce the first phase difference. A second phase control circuit is similarly configured to apply a second phase correction signal to the CVG resonator, to reduce a corresponding, second phase difference.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 25, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 10514261
    Abstract: A geopositioning system. The geopositioning system includes an accelerometer including three sensing axes, a gyroscope including three sensing axes, and a magnetometer including three sensing axes, and a processing circuit. The processing circuit is configured to calculate a location of the geopositioning system as a latitude, longitude, and altitude with respect to the Earth.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: December 24, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Hung Nguyen, Raviv Perahia, Deborah J. Kirby, Richard J. Joyce, David T. Chang
  • Publication number: 20190315621
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 17, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Deborah J. KIRBY, Raviv PERAHIA, Hung NGUYEN, Frederic P. STRATTON, David T. CHANG
  • Patent number: 10444014
    Abstract: An angular sensor. The angular sensor includes a Coriolis vibratory gyroscope (CVG) resonator, configured to oscillate in a first pair of normal modes including a first normal mode and a second normal mode and a second pair of normal modes including a third normal mode and a fourth normal mode. The angular sensor further includes a coarse readout circuit configured to drive the first pair of modes, measure the motion of the first pair of modes, and derive from the measured motion of the first pair of modes a coarse measurement of an angular rate of the resonator. The angular sensor further includes and a fine readout circuit configured to derive a measurement of the difference between the true angular rate of the resonator and the coarse measurement.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 15, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 10436587
    Abstract: An angular sensor, comprising a Coriolis vibratory gyroscope (CVG) resonator, capable of oscillating along a first pair of normal n=1 modes comprising a first normal mode and a second normal mode; and a second pair of normal n=2 modes comprising a third normal mode and a fourth normal mode; the sensor further comprising one drive electrode and one sense electrode aligned along an anti-nodal axis of each mode; and a pair of bias tune electrodes aligned with an anti-nodal axis of each mode if no drive and sense electrode pair is aligned with said anti-nodal axis.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: October 8, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Hung Nguyen, Raviv Perahia, Lian X. Huang, David T. Chang
  • Publication number: 20190305744
    Abstract: A method of making a SiC resonator includes forming a layer of an oxide material on a relatively thick wafer of SiC; bonding the layer of oxide material on the relatively thick wafer of SiC to a handle wafer having at least an oxide exterior surface, the resulting bond being substantially free of voids; planarizing the relatively thick wafer of SiC to a desired thickness; forming top and bottom electrodes on the wafer of SiC wafer to define a SiC wafer resonator portion; and forming a trench around the top and bottom electrodes, the tench completely penetrating the planarized wafer of SiC around a majority of a distance surrounding said top and bottom electrodes, except for one or more tether regions of the planarized wafer of SiC which remain physically coupled a remaining portion the SiC wafer resonator portion which defines a frame formed of the planarized wafer of SiC surrounding the SiC wafer resonator portion.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Raviv PERAHIA, Logan D. SORENSON, Lian X. HUANG, David T. CHANG, Makena S. WHITE, Jeremy BREGMAN
  • Patent number: 10398437
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 3, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, Robert T. Chang, David A. Rahdert, David Scott, David R. Tholfsen
  • Patent number: 10370658
    Abstract: This invention generally relates to a composition and method of using mam-made small RNAs, such as small interfering RNAs (siRNA), microRNAs (miRNA) and their hairpin-like precursors (pre-miRNA), as tumor suppressing anti-cancer drugs for treating human tumors and cancers, in particular, but not limited, for treating skin (melanoma), blood (leukemia), prostate, breast, liver and lung cancers as well as various neoplastic tumors, such as brain tumors and teratocarcinomas that contain a variety of tumorous and cancerous cells derived from all three germ layers of tissues, including ectoderm, mesoderm and endoderm. More specifically, the present invention relates to the use of miR-302-like siRNA (siR-302) and/or miR-302 precursors (pre-miR-302) for developing novel medicines and therapies against a variety of human cancers, in particular lung cancers.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: August 6, 2019
    Inventors: Shi-Lung Lin, Donald C. Chang, David T S Wu, Hsuan-Hsuan Lu
  • Publication number: 20190183645
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors, and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Publication number: 20190175343
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the right atrium, which allow tricuspid valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant. The implants or systems of implants and methods may utilize a bridge stop to secure the implant.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 13, 2019
    Inventors: Robert T. Chang, Timothy R. Machold, David A. Rahdert, Jason Rogers
  • Publication number: 20190169979
    Abstract: An instrument package for use during the drilling a wellbore. The instrument package includes a plurality of instruments such as accelerometers, gyroscopes, and magnetometers; a computer is configured to determine the current position of the plurality of instruments from a set of measurements produced by the plurality of instruments; and wherein the plurality of instruments are mechanically isolated from a drill head assembly by one or more multi-degree of freedom vibration isolators. The computer preferably has at least two modes different analytical modes of analyzing the set of measurements produced by the plurality of instruments, including a continuous mode and a survey mode, the continuous mode being operational during times that active drilling is occurring and the survey mode being operational during times that the active drilling is not occurring.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 6, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Hung NGUYEN, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Raviv Perahia, Shuoqin Wang, David W. Shahan, Lian X. Huang, David T. Chang
  • Patent number: 10308505
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: June 4, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Deborah J. Kirby, Raviv Perahia, Hung Nguyen, Frederic P. Stratton, David T. Chang
  • Patent number: 10281277
    Abstract: A phononic travelling wave gyroscope. The gyroscope includes a phononic waveguide including at least one loop. The phase change incurred by phonons propagating around the loop is compared to a reference phase, and utilized to form an estimate of the rotational rate of the gyroscope.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 7, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Raviv Perahia, Logan D. Sorenson, Lian X. Huang, Hung Nguyen, David T. Chang, Deborah J. Kirby
  • Publication number: 20190072388
    Abstract: A resonant structure comprising at least two coaxial rings, wherein adjacent coaxial rings have adjacent peripheries and are attached together by a plurality of connection structures regularly arranged along said adjacent peripheries; and wherein a first ring has a first ring portion with a first radial thickness and a second ring, portion, in a vicinity of a first connection structure, with a second radial thickness smaller than said first radial thickness.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 7, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Lian X. HUANG, Logan D. SORENSON, Chia-Ming "Gavin" CHANG, Raviv PERAHIA, Hung NGUYEN, David T. CHANG
  • Publication number: 20190049246
    Abstract: An angular sensor, comprising a Coriolis vibratory gyroscope (CVG) resonator, capable of oscillating along a first pair of normal n=1 modes comprising a first normal mode and a second normal mode; and a second pair of normal n=2 modes comprising a third normal mode and a fourth normal mode; the sensor further comprising one drive electrode and one sense electrode aligned along an anti-nodal axis of each mode; and a pair of bias tune electrodes aligned with an anti-nodal axis of each mode if no drive and sense electrode pair is aligned with said anti-nodal axis.
    Type: Application
    Filed: June 8, 2018
    Publication date: February 14, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Logan D. SORENSON, Hung Nguyen, Raviv PERAHIA, Lian X. Huang, David T. CHANG
  • Publication number: 20190049247
    Abstract: A resonator includes an anchor, an outer stiffener ring on an outer perimeter of the resonator, and a plurality of curved springs between the anchor and the outer stiffener ring.
    Type: Application
    Filed: June 7, 2018
    Publication date: February 14, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Lian X HUANG, Logan D. Sorenson, Raviv Perahia, Hung Nguyen, Hung Nguyen, David T. Chang
  • Patent number: 10175307
    Abstract: A magnetometer system has a magnetometer, an interface circuit and an electronic demodulator, the interface circuit being coupled to sense electrodes disposed on the magnetometer and the demodulator being coupled to the interface circuit. Preferably, the magnetometer has a loop electrode which follows an outline of the shape of an active portion of the magnetometer and wherein the electronic demodulator has an output for driving the loop electrode of the magnetometer. Preferably, the magnetometer includes a quartz plate with flexural and thickness shear vibratory modes and wherein the flexural vibratory mode is driven, in use, into vibration by the electronic demodulator and wherein the thickness shear vibratory mode is driven, in use, into vibration by the interface circuit.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 8, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Hung Nguyen, Raviv Perahia, David T. Chang, L. X. Coco Huang, Joshua A. Erbland
  • Publication number: 20180371894
    Abstract: A method for generating an output of a downhole inertial measurement unit (IMU) includes: generating a trajectory between a plurality of survey points of a planned well data as a function of time, wherein the planned well data includes a plurality of three-dimensional coordinates corresponding to the survey points of an underground planned well are used to generate a trajectory comprising a plurality of trajectory coordinates between the consecutive ones of the survey points; generating sensor data for each of the trajectory coordinates as a function of time based on the geodetic reference parameters, the generated sensor data comprising: generated accelerometer output; generated gyroscopic output; and generated magnetometer output; and outputting the generated accelerometer output; the generated gyroscopic output; and the generated magnetometer output as a function of time as a generated output of the downhole IMU.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Inventors: Shuoqin Wang, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Hung Nguyen, Raviv Perahia, David T. Chang