Patents by Inventor David T. Chang

David T. Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11561095
    Abstract: A resonator includes an anchor, an outer stiffener ring on an outer perimeter of the resonator, and a plurality of curved springs between the anchor and the outer stiffener ring.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: January 24, 2023
    Assignee: HRL LABORATORIES, LLC
    Inventors: Lian X. Huang, Logan Sorenson, Raviv Perahia, Hung Nguyen, David T. Chang
  • Patent number: 11506493
    Abstract: An angular rate sensor. The sensor includes a Coriolis vibratory gyroscope (CVG) resonator, configured to oscillate in a first normal mode and in a second normal mode; a frequency reference configured to generate a reference signal; and a first phase control circuit. The first phase control circuit is configured to: measure a first phase difference between: a first phase target, and the difference between: a phase of an oscillation of the first normal mode and a phase of the reference signal. The first phase control circuit is further configured to apply a first phase correction signal to the CVG resonator, to reduce the first phase difference. A second phase control circuit is similarly configured to apply a second phase correction signal to the CVG resonator, to reduce a corresponding, second phase difference.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: November 22, 2022
    Assignee: HRL LABORATORIES, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 11493534
    Abstract: A self-calibration method for an accelerometer having a proof mass separated by a gap from a drive electrode and a sense electrode includes initializing the accelerometer to resonate, applying a first bias voltage to the sense electrode and a second bias voltage to the drive electrode to obtain a first scale factor, measuring a first acceleration over a first time interval, swapping the first bias voltage on the sense electrode with the second bias voltage previously on the drive electrode and the second bias voltage on the drive electrode with the first bias voltage previously on the sense electrode so that a bias voltage on the sense electrode is set to the second bias voltage and a bias voltage on the drive electrode is set to the second bias voltage to obtain a second scale factor, measuring a second acceleration over a second time interval, and calculating a true acceleration.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 8, 2022
    Assignee: HRL LABORATORIES, LLC
    Inventors: Logan D. Sorenson, Lian X. Huang, Matthew J. Pelliccione, Raviv Perahia, Hung Nguyen, David T. Chang
  • Patent number: 11469732
    Abstract: A method of making a SiC resonator includes forming a layer of an oxide material on a relatively thick wafer of SiC; bonding the layer of oxide material on the relatively thick wafer of SiC to a handle wafer having at least an oxide exterior surface, the resulting bond being substantially free of voids; planarizing the relatively thick wafer of SiC to a desired thickness; forming top and bottom electrodes on the wafer of SiC wafer to define a SiC wafer resonator portion; and forming a trench around the top and bottom electrodes, the tench completely penetrating the planarized wafer of SiC around a majority of a distance surrounding said top and bottom electrodes, except for one or more tether regions of the planarized wafer of SiC which remain physically coupled a remaining portion the SiC wafer resonator portion which defines a frame formed of the planarized wafer of SiC surrounding the SiC wafer resonator portion.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 11, 2022
    Assignee: HRL LABORATORIES, LLC
    Inventors: Raviv Perahia, Logan D. Sorenson, Lian X. Huang, David T. Chang, Makena S. White, Jeremy Bregman
  • Patent number: 11299981
    Abstract: An instrument package for use during the drilling a wellbore. The instrument package includes a plurality of instruments such as accelerometers, gyroscopes, and magnetometers; a computer is configured to determine the current position of the plurality of instruments from a set of measurements produced by the plurality of instruments; and wherein the plurality of instruments are mechanically isolated from a drill head assembly by one or more multi-degree of freedom vibration isolators. The computer preferably has at least two modes different analytical modes of analyzing the set of measurements produced by the plurality of instruments, including a continuous mode and a survey mode, the continuous mode being operational during times that active drilling is occurring and the survey mode being operational during times that the active drilling is not occurring.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 12, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Hung Nguyen, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Raviv Perahia, Shuoqin Wang, David W. Shahan, Lian X. Huang, David T. Chang
  • Patent number: 11275099
    Abstract: A resonant accelerometer includes a proof mass, one or more springs connecting the proof mass to an anchor, and one or more capacitive transduction gaps providing a void or space between the movable proof mass and a corresponding fixed electrode, wherein the static displacement of the proof mass in response to acceleration applied to the anchor modifies the electrostatic stiffness imparted by one or more of the capacitive transduction gaps on the proof mass, resulting in a corresponding change in the resonance frequency of the resonant accelerometer.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 15, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Lian X. Huang, Raviv Perahia, Hung Nguyen, David T. Chang
  • Patent number: 11237000
    Abstract: A sensor comprising a resonator structure arranged for resonating along a first plane; and at least one sensing electrode arranged on a second plane parallel to said first plane at a predetermined distance of said resonator structure along a direction normal to said first plane.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: February 1, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Raviv Perahia, Lian X. Huang, Logan D. Sorenson, Hung Nguyen, David T. Chang
  • Patent number: 11150313
    Abstract: A sensing array includes a plurality of pixels, one pixel of which includes: a sensor, the sensor including a first electrode, a second electrode, and an atomic defect site configured to be excited by light of a first frequency; a light source below the sensor and configured to emit light of the first frequency toward the defect site; and a radio frequency (RF) source below the sensor and configured to provide a first voltage to the first electrode, a second voltage to the second electrode, and an RF signal to the sensor, wherein the sensor is configured to sense a magnitude of a physical parameter by generating a photocurrent corresponding to a magnitude of a physical parameter and a differential between the first and second voltages, when excited by the light of the first frequency and affected by the RF signal.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 19, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Edward H. Chen, Matthew J. Pelliccione, David T. Chang, Raviv Perahia, Biqin Huang
  • Patent number: 11137249
    Abstract: A resonant structure comprising at least two coaxial rings, wherein adjacent coaxial rings have adjacent peripheries and are attached together by a plurality of connection structures regularly arranged along said adjacent peripheries; and wherein a first ring has a first ring portion with a first radial thickness and a second ring, portion, in a vicinity of a first connection structure, with a second radial thickness smaller than said first radial thickness.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: October 5, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Lian X. Huang, Logan D. Sorenson, Chia-Ming “Gavin” Chang, Raviv Perahia, Hung Nguyen, David T. Chang
  • Patent number: 11117800
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 14, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Deborah J. Kirby, Raviv Perahia, Hung Nguyen, Frederic P. Stratton, David T. Chang
  • Patent number: 11101786
    Abstract: A MEMS resonator comprising a baseplate wafer; a piezoelectric HF-VHF resonator that comprises a monolithic piezoelectric member having at least two separate spring piezoelectric support members integrally extending therefrom, each spring piezoelectric support member having at least a rounded corner; said piezoelectric resonator being attached to the baseplate wafer by said support members; wherein said monolithic piezoelectric member comprises first and second main surfaces joined by side edges; at least one of said side edges forming an angle of between 90 and 105 degrees with one of the first and second main surfaces.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: August 24, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, David T. Chang
  • Patent number: 11066923
    Abstract: A method for generating an output of a downhole inertial measurement unit (IMU) includes: generating a trajectory between a plurality of survey points of a planned well data as a function of time, wherein the planned well data includes a plurality of three-dimensional coordinates corresponding to the survey points of an underground planned well are used to generate a trajectory comprising a plurality of trajectory coordinates between the consecutive ones of the survey points; generating sensor data for each of the trajectory coordinates as a function of time based on the geodetic reference parameters, the generated sensor data comprising: generated accelerometer output; generated gyroscopic output; and generated magnetometer output; and outputting the generated accelerometer output; the generated gyroscopic output; and the generated magnetometer output as a function of time as a generated output of the downhole IMU.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: July 20, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Shuoqin Wang, Logan D. Sorenson, David L. Walter, Adour V. Kabakian, Hung Nguyen, Raviv Perahia, David T. Chang
  • Patent number: 11060865
    Abstract: Dimensions of a disk resonator gyroscope along the radial line of a resonator can be varied to engineer radial stiffness. An apparatus may comprise: a resonator comprising a plurality of concentric circumferential segments and a plurality of slots formed between the concentric circumferential segments; and at least one support supporting the resonator, wherein a width, in a radial direction, of each of the concentric circumferential segments is varied depending on a distance from the at least one support to the each of the concentric circumferential segments. The apparatus may further comprise radial segments connecting between the concentric circumferential segments. The concentric circumferential segments may have a ring shape.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: July 13, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Lian X. Huang, Hung Nguyen, Raviv Perahia, Logan D. Sorenson, Patrick J. Webb, David T. Chang
  • Patent number: 10967092
    Abstract: A diffuser includes a housing with at least one inlet and at least one vent outlet, and a microblower carried by the housing. The microblower has an inlet side to receive air from the at least one inlet, and an outlet port. A bottle adapted to carry essential oil is included and has a neck opening. A tube directs air from the microblower outlet port into the neck opening to generate oil-laden air. A fan draws ambient air in from the at least one inlet and exhausts ambient air and oil-laden air through the at least one vent outlet.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 6, 2021
    Assignee: Greenair Inc.
    Inventor: David T. Chang
  • Patent number: 10914585
    Abstract: A sensor includes an acceleration or magnetic field sensitive microelectromechanical systems (MEMS) resonator, configured to oscillate in at least a first normal mode and a second normal mode. The sensor further includes: a coarse readout circuit configured to drive the first normal mode, measure a motion of the first normal mode, and derive from the measured motion a coarse measurement of the true acceleration or true external magnetic field; and a fine readout circuit configured to drive the second normal mode, measure a motion of the second normal mode, and derive from the measured motion and the coarse measurement a measurement of the difference between the true acceleration or true external magnetic field and the coarse measurement.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: February 9, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 10901054
    Abstract: An atomic defect sensor for measuring a magnitude of a physical parameter comprises an optical waveguide comprising an atomic defect site located within the optical waveguide, the optical waveguide being configured to guide an optical signal toward the atomic defect site, a first doped fin integrated with the optical waveguide at a first side of the optical waveguide, and a second doped fin integrated with the optical waveguide at a second side of the optical waveguide, wherein the atomic defect site is configured to be energetically stimulated by the optical signal in the presence of an RF signal, and to generate a photocurrent corresponding to the magnitude of the physical parameter and a voltage differential between the first and second doped fins.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 26, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Edward H. Chen, Matthew J. Pelliccione, David T. Chang, Raviv Perahia, Biqin Huang
  • Publication number: 20200330637
    Abstract: A diffuser includes a housing with at least one inlet and at least one vent outlet, and a microblower carried by the housing. The microblower has an inlet side to receive air from the at least one inlet, and an outlet port. A bottle adapted to carry essential oil is included and has a neck opening. A tube directs air from the microblower outlet port into the neck opening to generate oil-laden air. A fan draws ambient air in from the at least one inlet and exhausts ambient air and oil-laden air through the at least one vent outlet.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventor: DAVID T. CHANG
  • Publication number: 20200330721
    Abstract: A diffuser for multiple essential oils includes a housing that has at least one inlet and at least one outlet. At least two microblowers are carried by the housing to receive air though the at least one inlet. At least two bottles, each adapted to carry an essential oil, are associated with a corresponding one of the microblowers to generate a corresponding flow of oil-laden air. A controller selectively adjusts operation of each microblower to control the corresponding flows of oil-laden air to obtain a desired combination of oil-laden air exhausted through the at least one outlet.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventor: DAVID T. CHANG
  • Patent number: 10746758
    Abstract: A microelectromechanical (MEMS) sensor suite including a three axis accelerometer including an accelerometer sensor polyhedron having a series of faces, and a series of axial accelerometers on three faces of the series of faces of the accelerometer sensor polyhedron. The MEMS sensor suite also includes a three axis magnetometer including a magnetometer sensor polyhedron having a series of faces, and a series of axial magnetometers on three faces of the series of faces of the magnetometer sensor polyhedron.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: August 18, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Hung Nguyen, David T. Chang, Raviv Perahia, Logan D. Sorenson
  • Publication number: 20200256676
    Abstract: A resonator includes an anchor, an outer stiffener ring on an outer perimeter of the resonator, and a plurality of curved springs between the anchor and the outer stiffener ring.
    Type: Application
    Filed: April 13, 2020
    Publication date: August 13, 2020
    Applicant: HRL Laboratories, LLC
    Inventors: Lian X. HUANG, Logan SORENSON, Raviv PERAHIA, Hung NGUYEN, David T. CHANG