Patents by Inventor David T. Ferrughelli

David T. Ferrughelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140061095
    Abstract: The invention relates to upgraded pyrolysis products, hydroconversion processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes. In particular the invention provides methods for reducing coke fouling in such equipment.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: James H. BEECH, JR., Teng Xu, Keith G. Reed, David T. Ferrughelli
  • Publication number: 20140061096
    Abstract: The invention relates to processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Stephen H. BROWN, S. Mark Davis, J. Scott Buchanan, David T. Ferrughelli, Keith G. Reed
  • Patent number: 8613852
    Abstract: Self-compatible heavy oil streams are produced from converted and/or desulfurized fractions. In a preferred embodiment, an incompatibility stream is added to the converted and/or desulfurized stream to reduce the solubility number of the stream. After using a water wash to remove incompatible material, a lighter fraction is removed from the stream to increase the solubility number.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 24, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Walter D. Vann, David T. Ferrughelli, Eric B. Sirota, Howard Freund
  • Publication number: 20130008830
    Abstract: Methods and systems for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process and adding an antifouling agent containing a polymer base unit and a polyamine group to the crude hydrocarbon are provided. The antifouling agent can be obtained by converting a vinyl terminated polymer, such as polypropylene or poly(ethylene-co-propylene), to a terminal acyl containing functional group, followed by reacting the terminal acyl containing functional group with a polyamine compound.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 10, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Man Kit NG, Glen B. BRONS, David T. FERRUGHELLI, Hong CHENG, Kevin MALLORY, Emmanuel Ulysse, John R. Hagadorn, Donna J. CROWTHER, Patrick BRANT
  • Publication number: 20120270958
    Abstract: The present invention is directed to a membrane for ethanol and aromatics separation that is stable in an alcohol containing environment. The membrane is a polyether epoxy resin having an aliphatic substituted epoxide. The invention also teaches a method to control the flux and selectivity of the membrane.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 25, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Timothy D. Shaffer, Man Kit Ng, David T. Ferrughelli, George Skic, Randall D. Partridge
  • Patent number: 8168061
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Patent number: 8163168
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Patent number: 8147676
    Abstract: The present invention relates to an improved delayed coking process. A coker feed, such as a vacuum resid, is treated with (i) a metal-containing agent and (ii) an oxidizing agent. The feed is treated with the oxidizing agent at an oxidizing temperature. The oxidized feed is then pre-heated to coking temperatures and conducted to a coking vessel for a coking time to allow volatiles to evolve and to produce a substantially free-flowing coke. A metals-containing composition is added to the feed at at least one of the following points in the process: prior to the heating of the feed to coking temperatures, during such heating, and/or after such heating.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: April 3, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, David T. Ferrughelli, Martin L. Gorbaty, Simon R. Kelemen, Leo D. Brown
  • Patent number: 8119006
    Abstract: The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 21, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Abhimanyu O. Patil, Timothy D. Shaffer, David T. Ferrughelli, Beth A. Winsett, Benjamin A. McCool, Randall D. Partridge
  • Publication number: 20110147271
    Abstract: Self-compatible heavy oil streams are produced from converted and/or desulfurized fractions. In a preferred embodiment, an incompatibility stream is added to the converted and/or desulfurized stream to reduce the solubility number of the stream. After using a water wash to remove incompatible material, a lighter fraction is removed from the stream to increase the solubility number.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel P. Leta, Walter D. Vann, David T. Ferrughelli, Eric B. Sirota, Howard Freund
  • Patent number: 7943037
    Abstract: A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to membrane separation to produce a produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals, the retentate is then subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to give naphtha, distillate and gas oil fractions. The permeate from the membrane separation may be used as FCC feed either as such or with moderate hydrotreatment to remove residual heteroatoms. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: May 17, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Martin L. Gorbaty, David T. Ferrughelli, Edward W. Corcoran, Stephen M. Cundy
  • Patent number: 7931798
    Abstract: A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not normally higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to form a low boiling fraction and a relatively higher boiling fraction which is subjected to membrane separation to produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 26, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, David T. Ferrughelli, Edward W. Corcoran, Stephen M. Cundy, Andrew Kaldor
  • Patent number: 7815790
    Abstract: This invention relates to a process of producing an upgraded product stream from the products of a resid visbreaking process to produce an improved feedstream for refinery and petrochemical hydrocarbon conversion units. This process utilizes an ultrafiltration process for upgrading select visbreaking process product streams to produce a conversion unit feedstream with improved properties for maximizing the conversion unit's throughput, total conversion, run-time, and overall product value.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Leo D. Brown, David T. Ferrughelli, Stephen M. Cundy, MaryKathryn Lee, Copper E. Haith, Eric B. Sirota
  • Publication number: 20100059441
    Abstract: The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
    Type: Application
    Filed: August 21, 2009
    Publication date: March 11, 2010
    Inventors: Abhimanyu O. Pattil, Timothy D. Shaffer, David T. Ferrughelli, Beth A. Winsett, Benjamin A. McCool, Randall D. Partridge
  • Publication number: 20100018896
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 28, 2010
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20100018895
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 28, 2010
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20090230022
    Abstract: A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to membrane separation to produce a produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals, the retentate is then subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to give naphtha, distillate and gas oil fractions. The permeate from the membrane separation may be used as FCC feed either as such or with moderate hydrotreatment to remove residual heteroatoms. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 17, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, David T. Ferrughelli, Edward W. Corcoran, Stephen M. Cundy
  • Publication number: 20090234166
    Abstract: A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not normally higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to form a low boiling fraction and a relatively higher boiling fraction which is subjected to membrane separation to produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 17, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, David T. Ferrughelli, Edward W. Corcoran, Stephen M. Cundy, Andrew Kaldor
  • Publication number: 20090057198
    Abstract: This invention relates to a process of producing an upgraded product stream from the products of a resid visbreaking process to produce an improved feedstream for refinery and petrochemical hydrocarbon conversion units. This process utilizes an ultrafiltration process for upgrading select visbreaking process product streams to produce a conversion unit feedstream with improved properties for maximizing the conversion unit's throughput, total conversion, run-time, and overall product value.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 5, 2009
    Inventors: Daniel P. Leta, Leo D. Brown, David T. Ferrughelli, Stephen M. Cundy, MaryKathryn Lee, Copper E. Haith, Eric B. Sirota
  • Patent number: 7306713
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown