Patents by Inventor David T. Ferrughelli

David T. Ferrughelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7303664
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably shot coke. A coker feedstock, such as a vacuum residuum, is heated in a heating zone to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Publication number: 20040262198
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 30, 2004
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Publication number: 20040256292
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 23, 2004
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Publication number: 20030102250
    Abstract: A delayed coking process wherein substantially all of the coke produced is free-flowing anisotropic shot coke. A coker feedstock, such as a vacuum residuum, is treated with an oxidizing agent, such as air, to increase the level of one or more of asphaltenes, polars, and organically bound oxygen groups. The oxidized feedstock is then heated to coking temperatures and passed to a coker drum for an effective amount of time to allow volatiles to evolve and to produce a substantially free-flowing anisotropic shot coke.
    Type: Application
    Filed: November 12, 2002
    Publication date: June 5, 2003
    Inventors: Michael Siskin, David T. Ferrughelli, Martin L. Gorbaty, Simon R. Kelemen, Leo D. Brown
  • Patent number: 6245223
    Abstract: The present invention is a process to remove a major portion of metals and coke precursors from a hydrocarbon stream. The steps of the process include contacting the feedstream with a hydrocarbon insoluble adsorbent, recovering the oil which does not adsorb and removing the metals and coke precursors from the adsorbent.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: June 12, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, David T. Ferrughelli, William N. Olmstead, Sabato Miseo, Stuart L. Soled, Winston K. Robbins
  • Patent number: 6171471
    Abstract: The present invention is a slurry-type process for upgrading heavy oils to FCC and S/C feeds under temperature and pressure conditions similar to MSHP, but employing catalysts in concentrations small enough (e.g., <300 ppm Mo on feed) that they need not be recycled.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: January 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: David T. Ferrughelli, Martin L. Gorbaty
  • Patent number: 6156946
    Abstract: The present invention is a process for transforming aromatic organic compounds and resource materials. The process includes the steps of contacting an organic material selected from the group consisting of single and/or multi-ring aromatic compounds and alkylaromatic compounds, and their heteroatom-containing analogues, crude oil, petroleum, petrochemical streams, coals, shales, coal liquids, shale oils, heavy oils and bitumens with a microorganism or enzymes in order to hydroxylate the organic material, followed by contacting the hydroxylated organic resource material so as to cause hydrogenation and/or hydrogenolysis on the material.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: December 5, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Catherine L. Coyle, Michael Siskin, David T. Ferrughelli, Michael S. P. Logan, Gerben Zylstra
  • Patent number: 5910440
    Abstract: A process to remove organic sulfur from organic compounds and organic carbonaceous fuel substrates containing sulfur compounds having sulfur-carbon bonds is disclosed. The steps of the process include oxidizing the sulfur species to the sulfone and/or sulfoxide form, and reacting the sulfone and/or sulfoxide form in an aqueous media of the reacting step including a hydride transfer reducing agent. In a particular embodiment, the reducing agent is sodium formate, the oxidizing agent is a microorganism as exemplified by Rhodococcus species ATCC 55309 or Rhodococcus species ATCC 55310 or combinations thereof.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 8, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Matthew J. Grossman, Michael Siskin, David T. Ferrughelli, M. Kathryn Lee, James D. Senius
  • Patent number: 5611915
    Abstract: A process for heteroatom removal-enhancing hydrogenation of highly refractory aromatic ring structures that involves contacting a highly refractory structure having at least one aryl linkage connecting a first heteroaryl moiety and a moiety selected from the group consisting of an aryl moiety and a second heteroaryl moiety with supercritical water having a temperature of from about 400.degree. C. to about 600.degree. C. in the presence of from about 3.4 MPa to about 18.6 MPa of CO to produce lower molecular weight products having decreased aromatic and heteroatom content. The process has utility for producing more valuable lower molecular weight products having a reduced aromatic heteroatom content from starting materials that are highly refractory and widely considered to be difficult to upgrade such as coals and asphaltenes, and model compounds containing the biaryl linkages.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: March 18, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Michael Siskin, David T. Ferrughelli, Alan R. Katritzky, William N. Olmstead
  • Patent number: 4956420
    Abstract: Preparation of halothio-sulfonamide-modified terpolymers having a low degree of unsaturation is accomplished by preferably reacting N-chlorothio-sulfonamide with an ethylene-(alpha-olefin)-diene monomer terpolymer comprising, for example, 1,4- hexadiene and/or dicyclopentadiene, in the presence of a catalyst of the formula MAn, where A is an anion or mixture of anions of a weak acid, and M is a metal selected from copper, antimony, bismuth and tin and n is a number which corresponds to the oxidation state of M divided by the valence of said weak acid anion. The reaction is preferably carried out in a melt phase process. Additionally, metals such as zinc and iron can be used at low concentrations in a melt phase process or at short reaction times in a solution process. Mixtures of such modified terpolymers with highly unsaturated rubbery polymers and vulcanizates of such mixtures are particularly useful in pneumatic tire sidewalls.
    Type: Grant
    Filed: September 15, 1988
    Date of Patent: September 11, 1990
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Donald A. White, Richard S. Auda, William M. Davis, David T. Ferrughelli