Patents by Inventor David Thomas Engquist

David Thomas Engquist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11578925
    Abstract: A thermal management system for a test-and-measurement probe that includes a thermally insulated shroud and a fluid inlet conduit. The shroud is configured to enclose a first portion of a probe head of the probe within an interior cavity of the shroud, while permitting a second portion of the probe head to extend out of the shroud. The shroud further includes a fluid outlet passageway configured to permit a heat-transfer fluid to pass from a probe-head end of the interior cavity, through the interior cavity of the shroud, and out of the shroud through an access portion of the shroud. The fluid inlet conduit enters the shroud through the access portion of the shroud, extends through the interior cavity of the shroud, and is configured to introduce the heat-transfer fluid to the probe-head end of the interior cavity.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: February 14, 2023
    Assignee: Tektronix, Inc.
    Inventors: Julie A. Campbell, David Thomas Engquist, Sam J. Strickling
  • Publication number: 20220349917
    Abstract: A probe tip for an isolated probe having a triaxial cable has a conductive probe tip interface at one end of the cable, a signal conductor, the signal conductor traversing a length of the cable and electrically connected to the conductive probe tip interface, a reference conductor surrounding the signal conductor along the length of the cable, a shield conductor surrounding the reference conductor at least along the length of the cable, the shield conductor and the reference conductor electrically connected at ends of the probe tip, a first insulator between the signal conductor and the reference conductor along the length of the cable, a second insulator between the reference conductor and the shield conductor along the length of the cable, and high magnetic permeability material inside the shield conductor.
    Type: Application
    Filed: April 26, 2022
    Publication date: November 3, 2022
    Applicant: Tektronix, Inc.
    Inventors: Daniel G. Knierim, Josiah A. Bartlett, Andrew W. Rusinek, David Thomas Engquist
  • Publication number: 20210148640
    Abstract: A thermal management system for a test-and-measurement probe that includes a thermally insulated shroud and a fluid inlet conduit. The shroud is configured to enclose a first portion of a probe head of the probe within an interior cavity of the shroud, while permitting a second portion of the probe head to extend out of the shroud. The shroud further includes a fluid outlet passageway configured to permit a heat-transfer fluid to pass from a probe-head end of the interior cavity, through the interior cavity of the shroud, and out of the shroud through an access portion of the shroud. The fluid inlet conduit enters the shroud through the access portion of the shroud, extends through the interior cavity of the shroud, and is configured to introduce the heat-transfer fluid to the probe-head end of the interior cavity.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 20, 2021
    Applicant: Tektronix, Inc.
    Inventors: Julie A. Campbell, David Thomas Engquist, Sam J. Strickling
  • Patent number: 10228390
    Abstract: Embodiments of the present invention provide an improved cable assembly for connecting an electrical test and measurement probe to a device under test. One end of the probe is connected to a device under test (“DUT”), while the other end is connected to the instrument through one or more cables. To prevent mechanical stresses to the probe-DUT interface caused by the cables' resistance to bending and twisting, embodiments of the improved cable assembly use one or more pliable spines to hold the cable assembly in position after it has been bent or twisted. This provides a more secure connection to the DUT and prevents damage to the probe-DUT interface. Each spine is anchored to the tip of the probe, and may be further secured by an outer housing or additional anchors. A flexible boot may surround the cable assembly and/or outer housing, further protecting the cables from damage. Alternatively, one or more spines may be placed inside the boot.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: March 12, 2019
    Assignee: Tektronix, Inc.
    Inventors: James H. McGrath, Jr., David Thomas Engquist
  • Publication number: 20170045550
    Abstract: Embodiments of the present invention provide an improved cable assembly for connecting an electrical test and measurement probe to a device under test. One end of the probe is connected to a device under test (“DUT”), while the other end is connected to the instrument through one or more cables. To prevent mechanical stresses to the probe-DUT interface caused by the cables' resistance to bending and twisting, embodiments of the improved cable assembly use one or more pliable spines to hold the cable assembly in position after it has been bent or twisted. This provides a more secure connection to the DUT and prevents damage to the probe-DUT interface. Each spine is anchored to the tip of the probe, and may be further secured by an outer housing or additional anchors. A flexible boot may surround the cable assembly and/or outer housing, further protecting the cables from damage. Alternatively, one or more spines may be placed inside the boot.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 16, 2017
    Inventors: James H. McGrath, JR., David Thomas Engquist
  • Patent number: D947693
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 5, 2022
    Assignee: Tektronix, Inc.
    Inventors: David Thomas Engquist, Heather J. Vermilyea, Karl A. Rinder, Michael J. Mende, Tony Lee Tarr