Patents by Inventor David W. Boertjes

David W. Boertjes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240137143
    Abstract: A Reconfigurable Optical Add/Drop Multiplexer (ROADM) node includes a plurality of degrees; and one or more fiber/space switches, wherein each of the plurality of degrees connect to the one or more fiber/space switches, and the one or more fiber/space switches are configured to interconnect any of the plurality of degrees and optionally one or more add/drop components. The plurality of degrees are partially interconnected to one another, while supporting any-to-any interconnect based on a configuration of the one or more fiber/space switches.
    Type: Application
    Filed: April 13, 2022
    Publication date: April 25, 2024
    Inventors: Serge Asselin, David W. Boertjes
  • Patent number: 11967986
    Abstract: Systems and methods include causing perturbations across optical spectrum; probing responses across some or all of the optical spectrum after the perturbations; and determining a nonlinear transfer function based on the responses. The nonlinear transfer function can include a representation of any of end-to-end channel powers, Signal-to-Noise Ratio (SNR), Noise-to-Signal Ratio (NSR), Bit Error Rate (BER), Q, and Mean Squared Error (MSE).
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: April 23, 2024
    Assignee: Ciena Corporation
    Inventors: Alex W. MacKay, Priyanth Mehta, Andrew Kam, David W. Boertjes
  • Patent number: 11914855
    Abstract: Systems and methods include providing a user interface visualizing a current state of an optical network; receiving user inputs related to capacity mining in the optical network; determining a future state with the capacity mining based on the user inputs; and providing the user interface visualizing the future state. The future state can be presented with respect to a failed link and restoration of traffic on the failed link. The future state can include a plurality of plans with a visualization showing how much of the traffic is restored based on different approaches to the capacity mining. The capacity mining can include configuring optical modems based on determined available excess capacity.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: February 27, 2024
    Assignee: Ciena Corporation
    Inventors: Christiane Campbell, Brian Choi, Michael S. Wilgosh, David W. Boertjes, Gerard L. Swinkels, Tommaso D'Ippolito
  • Publication number: 20240031023
    Abstract: Systems and methods of optimizing launch power for each span in an optical system with a plurality of spans are provided. In an embodiment, a method includes varying power on a span under test of the plurality of spans; observing performance measurements related to of one or more channels, at corresponding optical receivers; and one of setting launch power for the span under test and repeating the varying and observing, responsive to the observed measurements.
    Type: Application
    Filed: July 19, 2022
    Publication date: January 25, 2024
    Inventors: Alex W. MacKay, Andrew D. Shiner, Yinqing Pei, David W. Boertjes, Fangyuan Zhang
  • Publication number: 20240031022
    Abstract: Systems and methods for optical fiber characterization using a nonlinear measurement of shaped Amplified Spontaneous Emission (ASE) transmitted over the optical fiber are provided. A method includes receiving an ASE signal on an optical fiber, wherein the ASE signal is transmitted from an ASE source connected to the optical fiber and the ASE signal includes a spectral shape at an input of the optical fiber; measuring a broadened spectral shape of the received ASE signal where the broadened spectral shape is different from the spectral shape at the input and broadened due to propagation of the ASE signal over the optical fiber; and determining one or more parameters of the optical fiber based on the broadened spectral shape of the received ASE signal.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: Ciena Corporation
    Inventors: Yinqing Pei, David W. Boertjes, Alex W. MacKay
  • Patent number: 11811459
    Abstract: System and methods of measuring nonlinear interference (NLI) on a per-span basis in an optical system with a plurality of spans are provided. The method includes steps of varying power based on phase sensitive detection method on a span under test of the plurality of spans; observing total noise, at an optical receiver, from all of the plurality of spans; and isolating noise for the span under test from the total noise based on the varying power. The optical system can be in-service with one or more traffic-carrying channels, and the varying power is small enough on the span under test which does not impact the one or more traffic-carrying channels.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: November 7, 2023
    Assignee: Ciena Corporation
    Inventors: Yinqing Pei, Andrew D. Shiner, Alex W. MacKay, David W. Boertjes, Fangyuan Zhang
  • Patent number: 11799546
    Abstract: Systems and methods include causing transmission of one or more shaped Amplified Spontaneous Emission (ASE) signals, from an ASE source (70), on an optical fiber (58, 60); obtaining received spectrum of the one or more shaped ASE signals from an optical receiver (68) connected to the optical fiber (58, 60); and characterizing the optical fiber (58, 60) based in part on one or more of a nonlinear skirt and a center dip depth in the received spectrum of the one or more shaped ASE signals. The one or more shaped ASE signals can be formed by the ASE source (70) communicatively coupled to a Wavelength Selective Switch (WSS) (62) that is configured to shape ASE from the ASE source to form the one or more shaped ASE signals with one or two or multiple peaks and with associated frequency.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: October 24, 2023
    Assignee: Ciena Corporation
    Inventors: Yinqing Pei, David W. Boertjes
  • Publication number: 20230318729
    Abstract: An optical link optimization includes receiving detected power outputs from one or more receivers in an optical network, wherein the detected power outputs include both a broad bandwidth power component and a low bandwidth power component; analyzing the detected power outputs to one or more of (1) balance power of a channel of interest for the one or more receivers and associated adjacent channels to a given channel of interest and (2) adjust filtering of the channel of interest for the one or more receivers and the associated adjacent channels to the given channel of interest; and configuring one or more components of the optical network to provide the one or more of (1) balance power and (2) adjust filtering.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Inventors: Tom Luk, David W. Boertjes
  • Patent number: 11747208
    Abstract: A management system for an optical line system includes one or more processors and memory storing instructions that, when executed, cause the one or more processors to receive State of Polarization (SOP) measurements from one or more optical components in the optical line system, wherein the SOP measurements are taken while traffic-bearing channels are operating, and monitor health of one or more fibers based on the SOP measurements. The health can include detection and/or localization of SOP transients.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: September 5, 2023
    Assignee: Ciena Corporation
    Inventors: Yinqing Pei, Jean-Luc Archambault, David W. Boertjes, David R. Doucet
  • Publication number: 20230146640
    Abstract: Systems and methods include receiving (S11) data for a plurality of elements associated with an optical network; determining (S12) an incremental noise penalty for each element of the plurality of elements based on the received data; and storing (S13) the incremental noise penalty for each element of the plurality of elements. The steps can further include determining (S14) Signal-to-Noise Ratio (SNR) across an optical path in the optical network by concatenating associated incremental noise penalties for each element in the optical path along with corrections. The present disclosure includes a fast, nonlinear estimation process with improved accuracy for low loss spans compared to traditional closed-form GN models, as well as a method to determine the coherent nonlinear penalty in an arbitrary concatenation of mixed heterogeneous fibers which is not considered by existing fast nonlinear interference calculation methods.
    Type: Application
    Filed: July 1, 2021
    Publication date: May 11, 2023
    Inventors: Alex W. MacKay, Fangyuan Zhang, David W. Boertjes, Andrew D. Shiner
  • Publication number: 20230125468
    Abstract: Systems and methods include providing a user interface visualizing a current state of an optical network; receiving user inputs related to capacity mining in the optical network; determining a future state with the capacity mining based on the user inputs; and providing the user interface visualizing the future state. The future state can be presented with respect to a failed link and restoration of traffic on the failed link. The future state can include a plurality of plans with a visualization showing how much of the traffic is restored based on different approaches to the capacity mining. The capacity mining can include configuring optical modems based on determined available excess capacity.
    Type: Application
    Filed: November 3, 2022
    Publication date: April 27, 2023
    Inventors: Christiane Campbell, Brian Choi, Michael S. Wilgosh, David W. Boertjes, Gerard L. Swinkels, Tommaso D'Ippolito
  • Patent number: 11632171
    Abstract: Systems and methods of optical restoration include, with a photonic service (14), in an optical network (10, 100), operating between two nodes (A, Z) via an associated optical modem (40) at each node, wherein each modem (40) is capable of supporting variable capacity, C1, C2, . . . , CN where C1>C2> . . . >CN, detecting a fault (16) on a home route of the photonic service (14) while the photonic service (14) operates at a home route capacity CH, CH is one of C1, C2, . . . , CN?1; downshifting the photonic service (14) to a restoration route capacity CR, CR is one of C2, C3 . . . , CN and CR<CH; switching the photonic service (14) from the home route to a restoration route (18) while the photonic service (14) operates at a restoration route capacity CR; and monitoring the photonic service (14) and copropagating photonic services during operation on the restoration route (18) at the restoration route capacity CR for an upshift of the photonic service (14).
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: April 18, 2023
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, David Atkinson, Marc De La Durantaye, David W. Boertjes
  • Publication number: 20230044243
    Abstract: Systems and methods include causing perturbations across optical spectrum; probing responses across some or all of the optical spectrum after the perturbations; and determining a nonlinear transfer function based on the responses. The nonlinear transfer function can include a representation of any of end-to-end channel powers, Signal-to-Noise Ratio (SNR), Noise-to-Signal Ratio (NSR), Bit Error Rate (BER), Q, and Mean Squared Error (MSE).
    Type: Application
    Filed: October 25, 2022
    Publication date: February 9, 2023
    Inventors: Alex W. MacKay, Priyanth Mehta, Andrew Kam, David W. Boertjes
  • Patent number: 11575431
    Abstract: Systems and methods include determining a current state of a network; determining a new state for the network having an improved cost relative to the current state; determining a defragmentation plan to move the network from the current state to the new state, the defragmentation plan including a sequence of steps; and, responsive to an event that presents an opportunity, implementing one or more steps of the sequence of steps. The implementing is conditioned on occurrence of the opportunity.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 7, 2023
    Assignee: Ciena Corporation
    Inventors: Andrew D. Shiner, John K. Oltman, David W. Boertjes
  • Patent number: 11553259
    Abstract: Systems and methods include, for operation on an optical fiber in an optical network with the optical fiber having extended optical spectrum that include a plurality of bands including at least the C-band and one or more additional bands, segmenting the plurality of bands by distance based on different transmission specifications for the plurality of bands based on fiber types and amplifiers used for corresponding bands; and placing one or more channels on the optical fiber in a corresponding band of the plurality of bands based on a distance between nodes associated with each of the one or more channels. The segmenting is based on a metric that is a function of fiber type of the optical fiber and amplifier performance for amplifiers used in the plurality of bands.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, David W. Boertjes, Loren S. Berg
  • Patent number: 11507262
    Abstract: Systems and methods for managing optical network services in an optical network include providing a user interface illustrating a current state of the optical network; performing analysis based on user input related to an event affecting the current state of the optical network to determine a first future state of the optical network; providing an updated user interface illustrating the first future state based on the analysis; performing an updated analysis based on updated user input received in response to the first future to determine a second future state of the optical network; and providing a further updated user interface illustrating the second future state.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: November 22, 2022
    Assignee: Ciena Corporation
    Inventors: Christiane Campbell, Brian Choi, Michael S. Wilgosh, David W. Boertjes, Gerard L. Swinkels, Tommaso D'Ippolito
  • Patent number: 11502746
    Abstract: Systems and methods include responsive to transmission of a power spectral density input into an optical system with one or more probe signals, obtaining first measurements of a performance metric of each of the one or more probe signals at an output of the optical system while the one or more probe signals are moved across a band of optical spectrum; responsive to causing power perturbations across the band, obtaining second measurements of the performance metric of each of the one or more probe signals at the output of the optical system while the one or more probe signals are moved across the band; analyzing the performance metric as a function of power utilizing the first measurements and the second measurements; and utilizing results from the analyzing to optimize the performance metric in the optical system.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 15, 2022
    Assignee: Ciena Corporation
    Inventors: Alex W. MacKay, Priyanth Mehta, Andrew Kam, David W. Boertjes
  • Patent number: 11496817
    Abstract: Systems and methods include, responsive to obtaining measurement data from an optical network and determining viability of a plurality of paths based on Signal-to-Noise Ratio (SNR) and availability of the plurality of paths, providing a User Interface (UI) that displays one or more photonic services and a path viability visualization for each of the one or more photonic services, wherein the path viability visualization, for each photonic service, includes visual elements for available paths of the plurality of paths and an indicator associated with each visual element indicative of path viability; and updating the UI responsive to a change in any of the viability and the availability of the plurality of paths. The steps can further include periodically obtaining the measurement data from the optical network and determining the viability of the plurality of paths.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: November 8, 2022
    Assignee: Ciena Corporation
    Inventors: Alex W. MacKay, Christiane Louise Campbell, David W. Boertjes, John K. Oltman, Tommaso D'Ippolito
  • Publication number: 20220329033
    Abstract: Systems and methods for optical amplifier failure prediction using Machine Learning (ML), such as for an Erbium-Doped Fiber Amplifier (EDFA), are described. A method include obtaining a plurality of inputs from an optical amplifier associated with an optical network; analyzing the plurality of inputs with a trained machine learning model; obtaining an estimate of a total pump current of the optical amplifier as an output of the trained machine learning model; and comparing the estimate of a total pump current to a measured total pump current of the optical amplifier.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 13, 2022
    Inventors: Carter Demars, Yinqing Pei, David W. Boertjes
  • Publication number: 20220294529
    Abstract: Systems, methods, and computer-readable media are provided for logging long-term data and analyzing the long-term data with short-term data to determine the health of fiber connections in an optical network. A method, according to one implementation, includes a step of obtaining data associated with performance of fiber connections of an optical network. The fiber connections include at least an inter-node fiber connecting two adjacent network nodes and an intra-node fiber connection connecting two photonic devices within each of the two adjacent network nodes. The method further includes the step of logging the data over time as historical data and then analyzing the health of the fiber connections based on the historical data and newly-obtained data. Also, the method includes displaying a report on an interactive user interface, whereby the report is configured to show the health of the fiber connections.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Inventors: Emil Janulewicz, Yinqing Pei, David Côté, David W. Boertjes