Patents by Inventor David W. Boertjes

David W. Boertjes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10237011
    Abstract: Pre-programming Layer-0 optical protection path restoration speeds is provided based on available path margin. Higher layer routers and switches can be made aware of the expected Layer-0 restoration time, and their switch time can be programmed accordingly. The proposed method can provide users an option to program a restoration speed for a specific photonic service on a per restoration path basis. The method can highlight which services will potentially be impacted by the selected restoration speed on that path. The user can proceed with the selected speed for restoring high priority layer-0 services even if that means the fast restoring event can potentially impact other low priority services already in-service on the restoration path.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 19, 2019
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, Dave C. Bownass, David W. Boertjes, Dave Atkinson, Dominic Richens
  • Patent number: 10200145
    Abstract: A flexible grid optical transceiver communicatively coupled to an optical network includes a coherent optical transmitter configured to generate a transmit signal at a first frequency/wavelength center and spanning a first one or more bins of optical spectrum; and a coherent optical receiver configured to receive a receive signal at a second frequency/wavelength center and spanning a second one or more bins of optical spectrum, wherein a size of each of the first one or more of bins and the second one or more of bins is based on a required roll off of a wavelength selective component in the optical network.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 5, 2019
    Assignee: Ciena Corporation
    Inventors: David W. Boertjes, Michel Belanger
  • Patent number: 10200770
    Abstract: A method of managing optical services in a node in an optical network utilizing a flexible grid includes utilizing a Media Channel (MC) Trail Termination Point (TTP) to model frequency allocation of a MC on the node; utilizing a Network Media Channel (NMC) Connection Termination Point (CTP) to model a specific port for an optical channel corresponding to the NMC; utilizing a NMC cross connection (CRS) to model a path of the NMC in the MC; and programming hardware in the node based on the MC TTP, the NMC CTP, and the NMC CRS.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 5, 2019
    Assignee: Ciena Corporation
    Inventors: Gerard L. Swinkels, Anurag Prakash, David W. Boertjes, David Miedema, Edward Chen, Trevor J. Ibach, Dominic Richens
  • Patent number: 10161798
    Abstract: A polarimeter system integrated into an optical line system includes a transmitter coupled to a transmit filter communicatively coupled to an output port in an optical line device, wherein the transmitter is configured to generate a polarization probe signal, and wherein a wavelength of the polarization probe signal is configured to operate in-service with traffic-bearing channels on the output port; and a polarimeter receiver coupled to a receive filter communicatively coupled to an input port in the optical line device, wherein the polarimeter receiver is configured to vary arrangement of input light from the filter and to measure various outputs of the varied arrangement to derive measurement of State of Polarization (SOP) of the input light.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 25, 2018
    Assignee: Ciena Corporation
    Inventors: Yinqing Pei, Jean-Luc Archambault, David W. Boertjes, David R. Doucet
  • Patent number: 10148384
    Abstract: A computer-implemented method to increase capacity of an optical network based on overall excess margin in the optical network includes determining an objective function based on data associated with a plurality of optical signals in the optical network, each of the optical signals between modems in the optical network, wherein an input to the objective function comprises how much margin the optical signals have until Forward Error Correction (FEC) limits are reached; performing an optimization of the objective function based on changing a plurality of parameters of the optical signals; and causing changes to settings of a subset of the modems based on the performing to change the capacity of the optical network.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 4, 2018
    Assignee: Ciena Corporation
    Inventors: Gerard L. Swinkels, David W. Boertjes, David Miedema, Kim B. Roberts
  • Publication number: 20180343077
    Abstract: Pre-programming Layer-0 optical protection path restoration speeds is provided based on available path margin. Higher layer routers and switches can be made aware of the expected Layer-0 restoration time, and their switch time can be programmed accordingly. The proposed method can provide users an option to program a restoration speed for a specific photonic service on a per restoration path basis. The method can highlight which services will potentially be impacted by the selected restoration speed on that path. The user can proceed with the selected speed for restoring high priority layer-0 services even if that means the fast restoring event can potentially impact other low priority services already in-service on the restoration path.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 29, 2018
    Inventors: Choudhury A. Al Sayeed, Dave C. Bownass, David W. Boertjes, Dave Atkinson, Dominic Richens
  • Publication number: 20180295429
    Abstract: A method of managing optical services in a node in an optical network utilizing a flexible grid includes utilizing a Media Channel (MC) Trail Termination Point (TTP) to model frequency allocation of a MC on the node; utilizing a Network Media Channel (NMC) Connection Termination Point (CTP) to model a specific port for an optical channel corresponding to the NMC; utilizing a NMC cross connection (CRS) to model a path of the NMC in the MC; and programming hardware in the node based on the MC TTP, the NMC CTP, and the NMC CRS.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 11, 2018
    Inventors: Gerard L. Swinkels, Anurag Prakash, David W. Boertjes, David Miedema, Edward Chen, Trevor J. Ibach, Dominic Richens
  • Publication number: 20180239522
    Abstract: Systems and methods for managing optical network services in an optical network include providing a user interface illustrating a current state of the optical network; performing analysis based on user input related to an event affecting the current state of the optical network to determine a first future state of the optical network; providing an updated user interface illustrating the first future state based on the analysis; performing an updated analysis based on updated user input received in response to the first future to determine a second future state of the optical network; and providing a further updated user interface illustrating the second future state.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 23, 2018
    Inventors: Christiane CAMPBELL, Brian CHOI, Michael S. WILGOSH, David W. BOERTJES, Gerard L. SWINKELS, Tommaso D'IPPOLITO
  • Patent number: 10050737
    Abstract: Pre-programming Layer-0 optical protection path restoration speeds is provided based on available path margin. Higher layer routers and switches can be made aware of the expected Layer-0 restoration time, and their switch time can be programmed accordingly. The proposed method can provide users an option to program a restoration speed for a specific photonic service on a per restoration path basis. The method can highlight which services will potentially be impacted by the selected restoration speed on that path. The user can proceed with the selected speed for restoring high priority layer-0 services even if that means the fast restoring event can potentially impact other low priority services already in-service on the restoration path.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 14, 2018
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, Dave C. Bownass, David W. Boertjes, Dave Atkinson, Dominic Richens
  • Patent number: 9973295
    Abstract: A method, an optical node, and an optical network include a power controller configured to bring channels in-service in parallel over multiple cascaded optical nodes quickly, efficiently, and in a non-service affecting manner. The method, node, and network utilize multiple states of a control loop that maintains a stable response in downstream optical nodes as channels are added in parallel. Further, the power controller is configured to operate independently alleviating dependencies on other power controllers and removing the need for coordination between power controllers. The method, node, and network provide efficient turn up of dense wave division multiplexing (DWDM) services which is critical to optical layer functionality including optical layer restoration.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 15, 2018
    Assignee: Ciena Corporation
    Inventors: Choudhury Al Sayeed, David C. Bownass, Loren S. Berg, David W. Boertjes
  • Publication number: 20180076884
    Abstract: Systems and methods using a bi-directional Optical Time Domain Reflectometer (OTDR) to monitor a fiber optic communication system including a first node and a second node. The systems and methods include performing a first OTDR measurement at a first OTDR wavelength at the first node on a first fiber; performing a second OTDR measurement at a second OTDR wavelength at the second node on the first fiber; and utilizing the first OTDR measurement and the second OTDR measurement for event detection on the first fiber.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 15, 2018
    Inventors: Jean-Luc ARCHAMBAULT, David W. BOERTJES
  • Patent number: 9847831
    Abstract: A dual wavelength Optical Time Domain Reflectometer (OTDR) system, embedded in a network element, includes a first OTDR source for wavelength ?1; a second OTDR source for wavelength ?2; an OTDR measurement subsystem adapted to measure backscatter signals ?1_BACK, ?2_BACK associated with the wavelength ?1 and the wavelength ?2; and one or more ports connecting the first OTDR source, the second OTDR source, and the OTDR measurement subsystem to one or more fiber pairs; wherein wavelength ?1 and wavelength ?2 are each outside of one or more signal bands with traffic-bearing channels, thereby enabling operation in-service with the traffic-bearing channels.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: December 19, 2017
    Assignee: Ciena Corporation
    Inventors: Jean-Luc Archambault, David W. Boertjes
  • Publication number: 20170356805
    Abstract: A polarimeter system integrated into an optical line system includes a transmitter coupled to a transmit filter communicatively coupled to an output port in an optical line device, wherein the transmitter is configured to generate a polarization probe signal, and wherein a wavelength of the polarization probe signal is configured to operate in-service with traffic-bearing channels on the output port; and a polarimeter receiver coupled to a receive filter communicatively coupled to an input port in the optical line device, wherein the polarimeter receiver is configured to vary arrangement of input light from the filter and to measure various outputs of the varied arrangement to derive measurement of State of Polarization (SOP) of the input light.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 14, 2017
    Inventors: Yinqing PEI, Jean-Luc ARCHAMBAULT, David W. BOERTJES, David R. DOUCET
  • Patent number: 9831947
    Abstract: Systems and methods for determining margin in an optical network include changing powers of signals from one or more transmitters; measuring noise at one or more receivers each communicatively coupled to the one or more transmitters; and determining margin between the one or more transmitters and the one or more receivers based on the associated measured noise. The changing, the measuring, and the determining are performed in-service while the one or more transmitters are each transmitting data-bearing signals.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: November 28, 2017
    Assignee: Ciena Corporation
    Inventor: David W. Boertjes
  • Publication number: 20170310392
    Abstract: Systems and methods for determining margin in an optical network include changing powers of signals from one or more transmitters; measuring noise at one or more receivers each communicatively coupled to the one or more transmitters; and determining margin between the one or more transmitters and the one or more receivers based on the associated measured noise. The changing, the measuring, and the determining are performed in-service while the one or more transmitters are each transmitting data-bearing signals.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 26, 2017
    Inventor: David W. BOERTJES
  • Publication number: 20170294959
    Abstract: A dual wavelength Optical Time Domain Reflectometer (OTDR) system, embedded in a network element, includes a first OTDR source for wavelength ?1; a second OTDR source for wavelength ?2; an OTDR measurement subsystem adapted to measure backscatter signals ?1_BACK, ?2_BACK associated with the wavelength ?1 and the wavelength ?2; and one or more ports connecting the first OTDR source, the second OTDR source, and the OTDR measurement subsystem to one or more fiber pairs; wherein wavelength ?1 and wavelength ?2 are each outside of one or more signal bands with traffic-bearing channels, thereby enabling operation in-service with the traffic-bearing channels.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 12, 2017
    Inventors: Jean-Luc ARCHAMBAULT, David W. BOERTJES
  • Publication number: 20170134114
    Abstract: A flexible grid optical transmitter communicatively coupled to an optical network includes a coherent optical transmitter configured to generate a signal at a respective center frequency on an optical spectrum and spanning n bins about the respective center frequency, wherein n is an integer greater than 1, wherein the respective center frequency and the n bins are utilized to perform Operations, Administration, Maintenance, and Provisioning (OAM&P) functions. The respective center frequency and the n bins are specified to the coherent optical transmitter by a management system for the OAM&P functions. Each of the n bins can include a same arbitrary size, and the arbitrary size can be greater than or equal to 1 GHz and less than or equal to 12.5 GHz.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Inventors: David W. BOERTJES, Michel BELANGER
  • Publication number: 20170085335
    Abstract: A flexible grid optical transceiver communicatively coupled to an optical network includes a coherent optical transmitter configured to generate a transmit signal at a first frequency/wavelength center and spanning a first one or more bins of optical spectrum; and a coherent optical receiver configured to receive a receive signal at a second frequency/wavelength center and spanning a second one or more bins of optical spectrum, wherein a size of each of the first one or more of bins and the second one or more of bins is based on a required roll off of a wavelength selective component in the optical network.
    Type: Application
    Filed: December 7, 2016
    Publication date: March 23, 2017
    Inventors: David W. BOERTJES, Michel BELANGER
  • Patent number: 9577763
    Abstract: Spectrum control systems and methods are implemented to minimize power spectral density (PSD) offsets by adjusting gain of optical amplifiers in an optical section. The optical section is a logical boundary from one optical signal access point to a next adjacent optical signal access point. The systems and methods include estimating PSD offset from a given target for a peak channel at each span in the optical section, wherein the estimated PSD offset is divided at each span into two components including a self-introduced offset and an uncompensated offset from upstream; generating, for each span, a separate controller response for the self-introduced offset and the uncompensated offset from upstream; and controlling the gain of the optical amplifiers based on the separate controller response for the self-introduced offset and the uncompensated offset from upstream, for each span.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: February 21, 2017
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, David C. Bownass, David W. Boertjes, Shiyu Gao
  • Publication number: 20170048018
    Abstract: A computer-implemented method to increase capacity of an optical network based on overall excess margin in the optical network includes determining an objective function based on data associated with a plurality of optical signals in the optical network, each of the optical signals between modems in the optical network, wherein an input to the objective function comprises how much margin the optical signals have until Forward Error Correction (FEC) limits are reached; performing an optimization of the objective function based on changing a plurality of parameters of the optical signals; and causing changes to settings of a subset of the modems based on the performing to change the capacity of the optical network.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Gerard L. SWINKELS, David W. BOERTJES, David MIEDEMA, Kim B. ROBERTS