Patents by Inventor David W. Peckham

David W. Peckham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240319461
    Abstract: Embodiments of the invention include an optical fiber ribbon. The optical fiber ribbon includes a plurality of optical fibers arranged adjacent to one another in a linear array. The optical fiber ribbon also includes a bonding matrix material applied to at least a portion of the outer surface of at least two adjacent optical fibers. The optical fiber ribbon also includes at least one marking applied to the outer surface of at least one optical fiber. The at least one marking is applied to the outer surface of at least one optical fiber in a manner that reduces the optical transmission loss of the optical fibers.
    Type: Application
    Filed: March 22, 2023
    Publication date: September 26, 2024
    Applicant: OFS Fitel, LLC
    Inventors: Eric T Joyce, Kariofilis Konstadinidis, Heng Ly, David W Peckham, Kenji Yokomizo
  • Patent number: 12088334
    Abstract: The systems and methods described herein are directed to techniques for improving battery life performance of end devices in resource monitoring systems which transmit data using low-power, wide area network (LPWAN) technologies. Further, the techniques include providing sensor interfaces in the end devices configured to communicate with multiple types of metrology sensors. Additionally, the systems and methods include techniques for reducing the size of a concentrator of a gateway device which receives resource measurement data from end devices. The reduced size of the concentrator results in smaller, more compact gateway devices that consume less energy and reduce heat dissipation experienced in gateway devices. The concentrator may comply with modular interface standards, and include two radios configured for transmitting 1-watt signals.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: September 10, 2024
    Assignee: HydroPoint Data Systems Inc.
    Inventors: Matthew W. Rose, Frank Burns, Matthew Maher Peterson, Canyon Daniel Peckham, Valentin Siderskiy, David Royce Humphrey, Thomas Remmers
  • Publication number: 20230384513
    Abstract: An optical fiber cable comprises an inner tube with strength members that are located external to, and alongside of, the inner tube. Water-blocking material is also located external to the inner tube. A sheath surrounds the strength members and the water-blocking material. The cable further comprises an optical fiber with a core, a trench surrounding the core, a cladding surrounding the trench, and a coating applied over the cladding. The cable comprises a fiber arrangement with N optical fibers (with N being an integer (e.g., 16, 32, 48, 96, etc.), of which at least one optical fiber has: a maximum effective area (Aeff) of approximately seventy-five square micrometers (˜75 ?m2) at a wavelength (?) of approximately 1550 nanometers (˜1550 nm); a maximum mode field diameter (MFD) of ˜8.8 ?m at ? of ˜1550 nm; a maximum cable cut-off ? of ˜1520 nm; and, a maximum attenuation of ˜0.180 decibels-per-kilometer (dB/km) at ? of ˜1550 nm.
    Type: Application
    Filed: October 18, 2021
    Publication date: November 30, 2023
    Applicant: OFS Fitel, LLC
    Inventors: David W Peckham, Durgesh Vaidya, Peter A Weimann
  • Patent number: 11161767
    Abstract: An optical preform manufacturing process is disclosed in which an alkali dopant is deposited between an optical fiber core rod and an optical fiber cladding jacket. Depositing the alkali dopant between the core rod and the cladding jacket permits diffusion of the alkali dopants into the core during fiber draw when the core and the cladding are at their respective transition (or vitrification) temperatures. Introduction of the alkali dopants between the core rod and the cladding jacket also permits decoupling of the alkali doping process from one or more of other optical preform manufacturing processes. The optical preform manufacturing process can also include placing alkali dopants between an optical fiber inner cladding jacket and an optical fiber outer cladding jacket to reduce the glass viscosity during fiber draw.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: November 2, 2021
    Assignee: OFS FITEL, LLC
    Inventors: David W. Peckham, Patrick W. Wisk, Man F. Yan
  • Publication number: 20200024176
    Abstract: An optical preform manufacturing process is disclosed in which an alkali dopant is deposited between an optical fiber core rod and an optical fiber cladding jacket. Depositing the alkali dopant between the core rod and the cladding jacket permits diffusion of the alkali dopants into the core during fiber draw when the core and the cladding are at their respective transition (or vitrification) temperatures. Introduction of the alkali dopants between the core rod and the cladding jacket also permits decoupling of the alkali doping process from one or more of other optical preform manufacturing processes. The optical preform manufacturing process can also include placing alkali dopants between an optical fiber inner cladding jacket and an optical fiber outer cladding jacket to reduce the glass viscosity during fiber draw.
    Type: Application
    Filed: January 7, 2019
    Publication date: January 23, 2020
    Applicant: OFS Fitel, LLC
    Inventors: David W. Peckham, Patrick W. Wisk, Man F. Yan
  • Patent number: 10451795
    Abstract: A optical fiber having core and cladding regions, a primary coating, and a secondary coating may be defined in part by a curve relating the microbend sensitivity to a ratio of the elastic modulus of the secondary coating to the elastic modulus of the primary coating (as plotted on respective y and x axes). The curve has a substantially peaked shape defined by a positive-slope region and a negative-slope region. The ratio of the elastic modulus of the secondary coating to the elastic modulus of the primary coating is within the positive-slope region.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 22, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Kariofilis Konstadinidis, David W Peckham, Debra A Simoff
  • Publication number: 20190146150
    Abstract: A optical fiber having core and cladding regions, a primary coating, and a secondary coating may be defined in part by a curve relating the microbend sensitivity to a ratio of the elastic modulus of the secondary coating to the elastic modulus of the primary coating (as plotted on respective y and x axes). The curve has a substantially peaked shape defined by a positive-slope region and a negative-slope region. The ratio of the elastic modulus of the secondary coating to the elastic modulus of the primary coating is within the positive-slope region.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 16, 2019
    Applicant: OFS Fitel, LLC
    Inventors: Kariofilis Konstadinidis, David W Peckham, Debra A Simoff
  • Patent number: 10259742
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 10197728
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 5, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20180251397
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: February 2, 2018
    Publication date: September 6, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9919955
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
  • Patent number: 9709731
    Abstract: A few-mode fiber is described, having a graded-index core and a surrounding cladding comprising a ledge between the core and the trench, a down-doped trench abutting the ledge, and an undoped cladding region abutting the trench. The fiber's refractive index profile is configured to support 9 or more LP modes for transmission of a spatially-multiplexed optical signal. Undesired modes have respective effective indices that are close to, or less than, the cladding index so as to result in leakage of the undesired modes into the outer cladding. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 18, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W. Peckham, Yi Sun
  • Patent number: 9658395
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber).
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 23, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20170022094
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 26, 2017
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Publication number: 20160170137
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Application
    Filed: November 12, 2015
    Publication date: June 16, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Publication number: 20160109651
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (Le., forming a “low loss” optical fiber).
    Type: Application
    Filed: August 13, 2015
    Publication date: April 21, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Patent number: 9250383
    Abstract: A few-mode optical fiber comprises a core surrounded by a cladding, having a step index profile that is structured to support propagation of a plurality of desired signal-carrying modes, while suppressing undesired modes. The core and cladding are configured such that the undesired modes have respective effective indices that are close to, or less than, the cladding index such that the undesired modes are leaky modes. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 2, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, Alan McCurdy, David W. Peckham, Torger Tokle
  • Patent number: 9116279
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for microbend frontier (MBF) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a relative effective index difference (Neff) of greater than about 0.08%; a loss at 1550 nm of less than 0.180 dB/km; and a microbend frontier (MBF) distance of less than about 90%.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 25, 2015
    Inventors: Robert L Lingle, Jr., David W Peckham
  • Publication number: 20150168643
    Abstract: A few-mode fiber is described, having a graded-index core and a surrounding cladding comprising a ledge between the core and the trench, a down-doped trench abutting the ledge, and an undoped cladding region abutting the trench. The fiber's refractive index profile is configured to support 9 or more LP modes for transmission of a spatially-multiplexed optical signal. Undesired modes have respective effective indices that are close to, or less than, the cladding index so as to result in leakage of the undesired modes into the outer cladding. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W. Peckham, Yi Sun
  • Patent number: 8948559
    Abstract: The specification describes modified step index and GRaded INdex (GRIN) fibers with low core relative delta (near 0.8%) which have desirable properties for transmission. These lower delta fibers have lower attenuation losses due to reduced Rayleigh scattering, which is desirable to improve performance in multiple mode multiplexing. The fiber designs include optimized raised triangle profiles, and depressed cladding profiles, to support two and four LP modes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W Peckham, Yi Sun