Patents by Inventor David Xuan-Qi Wang

David Xuan-Qi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11699566
    Abstract: An electrostatic device includes a top and a bottom silicon layer, around an insulating buried layer. A beam opening allows a beam of charged particles to travel through. The device is encapsulated in an insulating layer. One or more electrodes and ground planes are deposited on the insulating layer. These also cover the inside of the beam opening. Electrodes and ground planes are physically and electrically separated by micro-trenches and micro-undercuts that provide shadow areas when the conductive areas are deposited. Electrodes may be shaped as elongated islands and may include portions overhanging the top silicon layer, supported by electrode-anchors. Manufacturing starts from a single wafer including the top, buried, and bottom layers, or it starts from two separate silicon wafers. Manufacturing includes steps to form the top and bottom beam openings and microstructures, to encapsulate the device in an insulating layer, and to deposit electrodes and ground areas.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: July 11, 2023
    Assignee: ViaMEMS Technologies, Inc.
    Inventor: David Xuan-Qi Wang
  • Publication number: 20230071331
    Abstract: An electrostatic device includes a top and a bottom silicon layer, around an insulating buried layer. A beam opening allows a beam of charged particles to travel through. The device is encapsulated in an insulating layer. One or more electrodes and ground planes are deposited on the insulating layer. These also cover the inside of the beam opening. Electrodes and ground planes are physically and electrically separated by micro-trenches and micro-undercuts that provide shadow areas when the conductive areas are deposited. Electrodes may be shaped as elongated islands and may include portions overhanging the top silicon layer, supported by electrode-anchors. Manufacturing starts from a single wafer including the top, buried, and bottom layers, or it starts from two separate silicon wafers. Manufacturing includes steps to form the top and bottom beam openings and microstructures, to encapsulate the device in an insulating layer, and to deposit electrodes and ground areas.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 9, 2023
    Applicant: ViaMEMS Technologies, Inc.
    Inventor: David Xuan-Qi Wang
  • Publication number: 20230041174
    Abstract: An electrostatic device includes a top and a bottom silicon layer, around an insulating buried layer. A beam opening allows a beam of charged particles to travel through. The device is encapsulated in an insulating layer. One or more electrodes and ground planes are deposited on the insulating layer. These also cover the inside of the beam opening. Electrodes and ground planes are physically and electrically separated by micro-trenches and micro-undercuts that provide shadow areas when the conductive areas are deposited. Electrodes may be shaped as elongated islands and may include portions overhanging the top silicon layer, supported by electrode-anchors. Manufacturing starts from a single wafer including the top, buried, and bottom layers, or it starts from two separate silicon wafers. Manufacturing includes steps to form the top and bottom beam openings and microstructures, to encapsulate the device in an insulating layer, and to deposit electrodes and ground areas.
    Type: Application
    Filed: July 1, 2022
    Publication date: February 9, 2023
    Applicant: ViaMEMS Technologies, Inc.
    Inventor: David Xuan-Qi Wang
  • Patent number: 10181535
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: January 15, 2019
    Assignee: Tesla, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang, Karl-Josef Kramer, Sean M. Seutter, Sam Tone Tor, Anthony Calcaterra
  • Patent number: 9997389
    Abstract: In one embodiment, there is provided a carrier comprising a top semiconductor layer having isolated positive electrode regions and isolated negative electrode regions separated by a frontside trench through the top semiconductor layer extending at least to an underlying insulating layer positioned between the top semiconductor layer and a bottom semiconductor layer. A dielectric layer covers the top exposed surfaces of the carrier. Backside trenches through the bottom semiconductor layer extending at least to the insulating layer form isolated backside regions corresponding to the frontside positive and negative electrode regions. Backside contacts positioned on the bottom semiconductor layer and coupled to the positive and negative electrode regions allow for the electric charging of the frontside electrode regions.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: June 12, 2018
    Assignee: Tesla, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20170372887
    Abstract: A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
    Type: Application
    Filed: May 16, 2016
    Publication date: December 28, 2017
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Patent number: 9842949
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 12, 2017
    Assignee: OB REALTY, LLC
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, K.-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Publication number: 20170345957
    Abstract: A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.
    Type: Application
    Filed: June 12, 2017
    Publication date: November 30, 2017
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Patent number: 9680041
    Abstract: A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 13, 2017
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Patent number: 9590035
    Abstract: A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: March 7, 2017
    Assignee: Solexel, Inc.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Publication number: 20160358802
    Abstract: In one embodiment, there is provided a carrier comprising a top semiconductor layer having isolated positive electrode regions and isolated negative electrode regions separated by a frontside trench through the top semiconductor layer extending at least to an underlying insulating layer positioned between the top semiconductor layer and a bottom semiconductor layer. A dielectric layer covers the top exposed surfaces of the carrier. Backside trenches through the bottom semiconductor layer extending at least to the insulating layer form isolated backside regions corresponding to the frontside positive and negative electrode regions. Backside contacts positioned on the bottom semiconductor layer and coupled to the positive and negative electrode regions allow for the electric charging of the frontside electrode regions.
    Type: Application
    Filed: January 8, 2016
    Publication date: December 8, 2016
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20160336465
    Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
    Type: Application
    Filed: November 23, 2015
    Publication date: November 17, 2016
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean M. Seutter, Virendra V. Rana, Anthony Calcaterra, Emmanuel Van Kerschaver
  • Patent number: 9401276
    Abstract: An apparatus for forming porous silicon layers on at least two surfaces of a plurality of silicon templates in a batch electrochemical anodic etch process is provided. The apparatus comprises a plurality of edge-sealing template mounts operable to prevent formation of porous silicon at the edges of a plurality of templates. An electrolyte is disposed among the plurality of templates. The apparatus further comprises a power supply operable to switch polarity, change current intensity, and control etching time to produce the porous silicon layers.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 26, 2016
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Karl-Josef Kramer, David Xuan-Qi Wang, Pawan Kapur, Somnath Nag, George D. Kamian, Jay Ashjaee, Takao Yonehara
  • Patent number: 9397250
    Abstract: According to one embodiment, a releasing apparatus for separating a semiconductor substrate from a semiconductor template, the releasing apparatus having an enclosed pressure chamber having at least one gas inlet and at least one gas outlet. A top vacuum chuck for securing a released semiconductor substrate or semiconductor template in the enclosed pressure chamber. A bottom vacuum chuck for securing an attached semiconductor substrate and semiconductor template in the enclosed pressure chamber. A gap between the attached semiconductor substrate and semiconductor template and the top vacuum chuck allowing gas flowing through the gap to generate lifting forces on the attached semiconductor substrate and semiconductor template.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: July 19, 2016
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang, Sam Tone Tor, Karl-Josef Kramer
  • Patent number: 9343299
    Abstract: A method is provided for fabricating a semiconductor substrate by forming a porous semiconductor layer conformally on a semiconductor template and then forming a semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the semiconductor substrate is formed on the semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the semiconductor substrate and is positioned between the inner trench and the edge of the semiconductor substrate. The semiconductor substrate is then released from the semiconductor template.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: May 17, 2016
    Assignee: Solexel, Inc.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Patent number: 9330952
    Abstract: In one embodiment, there is provided a carrier comprising a top semiconductor layer having isolated positive electrode regions and isolated negative electrode regions separated by a frontside trench through the top semiconductor layer extending at least to an underlying insulating layer positioned between the top semiconductor layer and a bottom semiconductor layer. A dielectric layer covers the top exposed surfaces of the carrier. Backside trenches through the bottom semiconductor layer extending at least to the insulating layer form isolated backside regions corresponding to the frontside positive and negative electrode regions. Backside contacts positioned on the bottom semiconductor layer and coupled to the positive and negative electrode regions allow for the electric charging of the frontside electrode regions.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 3, 2016
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20160013335
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, attaching a prepreg backplane to the interdigitated pattern of base electrodes and emitter electrodes, forming holes in the prepreg backplane which provide access to the first layer of electrically conductive metal, and depositing a second layer of electrically conductive metal on the backside surface of the prepreg backplane forming an electrical interconnect with the first layer of electrically conductive metal through the holes in the prepreg backplane.
    Type: Application
    Filed: February 5, 2015
    Publication date: January 14, 2016
    Inventors: Mehrdad M. Moslehi, Karl-Josef Kramer, Sean M. Seutter, Pawan Kapur, Thom Stalcup, David Xuan-Qi Wang, George D. Kamian, Kamran Manteghi, Yen-Sheng Su, Pranav Anbalagan, Virendra V. Rana, Anthony Calcaterra, Gerry Olsen, Wojciech Worwag
  • Patent number: 9196759
    Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 24, 2015
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean M. Seutter, Virendra V. Rana, Anthony Calcaterra, Emmanuel Van Kerschaver
  • Publication number: 20150303331
    Abstract: A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.
    Type: Application
    Filed: December 19, 2014
    Publication date: October 22, 2015
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20150243814
    Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 27, 2015
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean M. Seutter, Virendra V. Rana, Anthony Calcaterra, Emmanuel Van Kerschaver