Patents by Inventor Dayong Gao

Dayong Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118122
    Abstract: A capacitive sensor system configured to measure capacitance, including a sample volume, a sample capacitive sensor configured to measure the capacitance of the sample volume without physical contact between the sample capacitive sensor and the sample volume, a control capacitive sensor, a differential sensing subsystem configured to measure a control sensor volume using the control capacitive sensor, and electrical circuitry connected to both the control capacitive sensor and the sample capacitive sensor.
    Type: Application
    Filed: February 1, 2022
    Publication date: April 11, 2024
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Praveen Kaliappan Sekar, Dayong Gao, Jae-Hyun Chung, Yanyun Wu
  • Publication number: 20240050566
    Abstract: The present disclosure provides, among other things, a method of cryopreserving and thawing cells that results in the thawed cells having high cellular viability and functionality post-thawing. In some embodiments, a large-scale method of cryopreserving cells is provided, the method comprising: (a) contacting the cells with a cryopreservation medium; (b) cooling the cells to ?80° C. at a controlled rate to minimize latent heat of fusion; and (c) storing the cells in liquid nitrogen vapor phase, thereby cryopreserving the immune cells.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 15, 2024
    Inventors: Shuxia ZHOU, Lan Cao, Dayong Gao, Qiong Xue, Jiusong Sun, Huang Zhu
  • Patent number: 11719585
    Abstract: Fracture-induced composite sensors and methods of their fabrication are disclosed. The sensors can be used as strain sensors, piezo-resistive sensors, piezo-capacitive sensors, and non-contact displacement wearable sensors.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 8, 2023
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Jinyuan Zhang, Dayong Gao, Jinkyu Yang
  • Publication number: 20200370972
    Abstract: Fracture-induced composite sensors and methods of their fabrication are disclosed. The sensors can be used as strain sensors, piezo-resistive sensors, piezo-capacitive sensors, and non-contact displacement wearable sensors.
    Type: Application
    Filed: December 3, 2018
    Publication date: November 26, 2020
    Inventors: Jae-Hyun CHUNG, Jinyuan ZHANG, Dayong GAO, Jinkyu YANG
  • Patent number: 9518956
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: December 13, 2016
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Patent number: 9410634
    Abstract: The present invention relates to an anti-shake flow-limiting cutoff valve, comprising a flow stop valve, a cutoff valve and a check structure. Said flow stop valve comprises a valve body, a valve seat, a piston and a biasing component. The check structure is arranged downstream said flow stop valve to prevent fluid from flowing back. In case of a sudden excessive water flow, the flow stop valve is closed under impact of excessive water pressure to block the water flow. At this time, since the liquid flow in the pipeline is suddenly blocked, the liquid flow remaining in a pipeline downstream the flow stop valve tends to form a reverse flow to impact the flow stop valve, thus shaking the flow stop valve, which may further lead to insufficient close or damage of the flow stop valve.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: August 9, 2016
    Assignee: Zhuhai Edison Ecotech Corp.
    Inventor: Dayong Gao
  • Publication number: 20160025677
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Application
    Filed: July 27, 2015
    Publication date: January 28, 2016
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Patent number: 9097664
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 4, 2015
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Publication number: 20150000769
    Abstract: The present invention relates to an anti-shake flow-limiting cutoff valve, comprising a flow stop valve, a cutoff valve and a check structure. Said flow stop valve comprises a valve body, a valve seat, a piston and a biasing component. The check structure is arranged downstream said flow stop valve to prevent fluid from flowing back. In case of a sudden excessive water flow, the flow stop valve is closed under impact of excessive water pressure to block the water flow. At this time, since the liquid flow in the pipeline is suddenly blocked, the liquid flow remaining in a pipeline downstream the flow stop valve tends to form a reverse flow to impact the flow stop valve, thus shaking the flow stop valve, which may further lead to insufficient close or damage of the flow stop valve.
    Type: Application
    Filed: February 28, 2014
    Publication date: January 1, 2015
    Applicant: ZHUHAI EDISON ECOTECH CORPORATION CO., LTD.
    Inventor: Dayong GAO
  • Publication number: 20140251808
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Application
    Filed: December 13, 2013
    Publication date: September 11, 2014
    Applicant: University of Washington
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Patent number: 8632669
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 21, 2014
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Publication number: 20090301883
    Abstract: Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 10, 2009
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Jae-Hyun Chung, Woonhong Yeo, Kyong-Hoon Lee, Jeffrey W. Chamberlain, Gareth Fotouhi, Shieng Liu, Kie Seok Oh, Daniel M. Ratner, Dayong Gao, Fong-Li Chou
  • Patent number: 7604930
    Abstract: Novel methods, compositions, and devices for achieving optimal cooling of living cells during cryopreservation are disclosed. In one aspect, the method comprises gradually cooling the cell to a first predetermined temperature, followed by rapidly cooling the cell to a second predetermined temperature. In another aspect, a device is described for achieving a desired cooling rate for a cell, comprising a first container for holding a cell, a second container for holding the first container, and optionally a frame for holding the first container in a spaced apart relationship with the second container. The method of the invention comprises placing cells into the first container, placing the first container in the second container and sealing the second container, and placing the second container in a suitable cooling device. In yet another aspect, novel cryoprotectant compositions are provided comprising conventional cryoprotectant plus one or more high molecular weight cryoprotectants.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: October 20, 2009
    Assignee: University of Kentucky Research Foundation
    Inventors: Dayong Gao, Gary Van Zant, XiangDong Cui
  • Publication number: 20080035568
    Abstract: A filter module utilizing a nano-porous ceramic membrane is provided for various applications including, but not limited to, enhanced hemodialysis performance, the removal (or separation) of cryoprotectant from biological materials, the separation of blood components (e.g., plasmapheresis), and controlling the concentration of cells in a biological fluid solution.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 14, 2008
    Inventors: Zhongping HUANG, William VAN GEERTRUYDEN, Dayong GAO
  • Patent number: 6869758
    Abstract: Novel methods and devices for removing cryoprotectant from cryoprotectant-containing liquids, and from cells residing therein, are disclosed. In one aspect, the method comprises passing the cryoprotectant-containing liquid through at least one semipermeable hollow fiber membrane contained in a hollow module in a first direction, while passing a liquid which is substantially free of cryoprotectant through the hollow module in a second direction to remove cryoprotectant across a diffusion gradient. In another aspect, a device is described for removing cryoprotectant from a liquid, comprising a hollow module with at least one semipermeable hollow fiber membrane therein for accomplishing such counter-current diffusion removal of cryprotectant. A software program is also provided for predicting optimal flow rates through the device of the invention, thereby allowing optimal cryoprotectant removal regardless of the cryoprotectant used or the material from which the semipermeable hollow fiber membrane is fabricated.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: March 22, 2005
    Assignee: University of Kentucky Research Foundation
    Inventors: Dayong Gao, XiangDong Cui
  • Patent number: 6739138
    Abstract: A heating and cooling apparatus to be applied to an object to control the temperature of the object. A number of thermoelectric modules are adapted to be positioned in contact with the object in a pattern. A voltage source is adapted to apply a voltage to the thermoelectric modules to cause a temperature change in each thermoelectric module so as to control the temperature of the object in accordance with the pattern and with the voltage applied to thermoelectric modules.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: May 25, 2004
    Assignee: Innovations Inc.
    Inventors: John Saunders, Jamey D. Jacob, Dayong Gao, Michel A. Myers
  • Publication number: 20030097845
    Abstract: A heating and cooling apparatus to be applied to an object to control the temperature of the object. A number of thermoelectric modules are adapted to be positioned in contact with the object in a pattern. A voltage source is adapted to apply a voltage to the thermoelectric modules to cause a temperature change in each thermoelectric module so as to control the temperature of the object in accordance with the pattern and with the voltage applied to thermoelectric modules.
    Type: Application
    Filed: July 2, 2002
    Publication date: May 29, 2003
    Inventors: John Saunders, Jamey D. Jacob, Dayong Gao, Michel A. Myers
  • Patent number: 6054287
    Abstract: A mathematical model, the membranes and devices based upon that model to optimize protocols for the addition or removal of cryoprotectant to or from biological cells, and a method to observe the biological cells and obtain the data to implement the models. This disclosure describes the use of four equations to predict optimal protocols to add or remove cryoprotectant to or from biological cells. The equations particularly require experimentally found data, specific to cell-type and species, regarding the osmotic tolerance of the cells, where osmotic tolerance refers to the cells ability to shrink or swell to various changes in osmolality without injury. The equations further require the cryoprotectant permeability coefficient and the water permeability coefficient of the particular cells' plasma membrane.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: April 25, 2000
    Assignee: Methodist Hospital of Indiana, Inc.
    Inventors: Dayong Gao, John K. Critser
  • Patent number: 5753427
    Abstract: A mathematical model, and membranes and devices based upon that model, to optimize protocols for the addition or removal of cryoprotectant to or from biological cells. This disclosure describes the use of four equations to predict optimal protocols to add or remove cryoprotectant to or from biological cells. The equations particularly require experimentally found data, specific to cell-type and species, regarding the osmotic tolerance of the cells, where osmotic tolerance refers to the cells ability to shrink or swell to various changes in osmolality without injury. The equations further require the cryoprotectant permeability coefficient and the water permeability coefficient of the particular cells' plasma membrane. These coefficients are found with experimental data of the knetic volume change of the cell-type to a known concentration and temperature of cryoprotectant.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 19, 1998
    Assignee: Methodist Hospital of Indiana
    Inventors: John K. Critser, Dayong Gao
  • Patent number: 5611787
    Abstract: The present invention provides a method and device for placement of a gastric line in the digestive tract of a patient. A guide element is either formed integrally with the end of a gastric line or it is formed separately to be fixed on the end segment of a gastric line to reduce the flexibility of the gastric line segment and facilitate the positioning of the gastric line in a patient's digestive tract. The guide element is provided with means for slideably engaging a previously positioned transepiglottal guide line so that the guide element when engaged with the guide line, can be pushed down the guide line to position the gastric line in an esophageal or post-esophageal position. An optional mouthpiece is provided to receive and guide the gastric tube toward the middle of the posterior oral pharynx during insertion and to protect the gastric line from the biting surfaces of the teeth and maintain its position in the mouth after insertion.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: March 18, 1997
    Assignee: Methodist Hospital of Indiana, Inc.
    Inventors: Robert J. Demeter, Henry C. Bock, Dayong Gao