Patents by Inventor Deepak Mathew

Deepak Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140071869
    Abstract: A system and method dynamically scale power consumed by the circuitry of an electronic device based on channel state and/or data rate. The electronic device then operates according to the power scaling. The scaling may be in accordance with an effective data rate, a number of multiple input multiple output (MIMO) layers, receiver type, a cell scenario, or a number of carriers. A number of MIMO layers can be predicted based on at least one of channel conditions or a channel quality index (CQI).
    Type: Application
    Filed: August 15, 2013
    Publication date: March 13, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Deepak MATHEW, Garret Webster SHIH, Jose FRIDMAN, Robin L. BROWN
  • Publication number: 20140059323
    Abstract: Systems and methods of data extraction in a vector processor are disclosed. In a particular embodiment a method of data extraction in a vector processor includes copying at least one data element to a source register of a permutation network. The method includes reordering multiple data elements of the source register, populating a destination register of the permutation network with the reordered data elements, and copying the reordered data elements from the destination register to a memory.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Applicant: Qualcomm Incorporated
    Inventors: Jose Fridman, Ajay Anant Ingle, Deepak Mathew, Marc M. Hoffman, Michael John Lopez
  • Patent number: 8358988
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data, an intermediate frame buffer that receives the de-mapped physical channel data, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data, a CRC checker and an output buffer.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: January 22, 2013
    Assignee: MediaTek Inc.
    Inventors: Lidwine Martinot, Deepak Mathew, Krishnan Vishwanathan, Eric Aardoom, Aiguo Yan, Timothy Fisher-Jeffes
  • Patent number: 8358987
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data, an intermediate frame buffer that receives the de-mapped physical channel data, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data, a CRC checker and an output buffer.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: January 22, 2013
    Assignee: MediaTek Inc.
    Inventors: Deepak Mathew, Aiguo Yan, Krishnan Vishwanathan, Eric Aardoom, Timothy Fisher-Jeffes
  • Patent number: 8316378
    Abstract: A method includes receiving data in a first data processing module, and enabling a second data processing module when at least one signal time slot of the received data comprises data that complies with a first data transmission standard. The method also includes exchanging signals between the first data processing module and software executing in a processor, and determining that a software configuration of the second data processing module has been completed. The method also includes processing the data in the second data processing module for the at least one signal time slot, and enabling a third data processing module upon a completion of processing at least one data block in the second data processing module, and determining that a software configuration of the third data processing module has been completed, the at least one data block comprising multiple signal time slots.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: November 20, 2012
    Assignee: MediaTek Inc.
    Inventors: John Zijun Shen, Carsten Aagaard Pedersen, Deepak Mathew, Paul Donald Krivacek, Aiguo Yan, Timothy Perrin Fisher-Jeffes
  • Patent number: 8149702
    Abstract: An apparatus for processing signals in a wireless system includes a first memory module to receive input data from a set of physical channels, a first plurality of sub-modules to process the input data. Each of the first plurality of sub-modules is selected to function based upon data and transmission channel specifications. The apparatus also includes a second memory module to receive processed input data and output intermediate data. Locations of the input data in the second memory is allocated in connection with data and transmission channel specifications. The apparatus also includes a second plurality of sub-modules to process the intermediate data. Each of the second plurality of sub-modules is selected to function based upon data and transmission channel specifications. The apparatus also includes a third memory module to receive and output bit rate processing output.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 3, 2012
    Assignee: MediaTek Inc.
    Inventors: Deepak Mathew, Eric Aardoom, Timothy Perrin Fisher-Jeffes, David Stephen Ivory, Carsten Aagaard Pedersen, Aiguo Yan
  • Patent number: 8094641
    Abstract: A wireless device has a BRP-CRP interface that includes a dual-port frame memory having a first access port and a second access port in which data can be written to the dual-port frame memory through the first access port at the same time that data is read from the dual-port frame memory through the second access port. A bit rate processor performs bit rate processing on input data and writes data resulting from the bit rate processing to the dual-port frame memory through the first access port. A chip rate processor reads data from the dual-port frame memory through the second access port and performs chip rate processing on the data read from the dual-port frame memory. A data processor executes a software application that writes data to the dual-port frame memory through the first access port and reads data from the dual-port frame memory through the second access port.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: January 10, 2012
    Assignee: MediaTek Inc.
    Inventors: Deepak Mathew, Russ Mestechkin, Prahallada Ponnathota, Thomas F. Howe, Timothy Perrin Fisher-Jeffes
  • Patent number: 8054922
    Abstract: A system includes a receiver for receiving a modulated signal. The receiver includes a gain estimator for converting complex data representative of constellation points of the modulated signal into scalar data representation. The gain estimator is configured to fold a first portion of the scalar data representation onto a second portion of the scalar data representation. The gain estimator is further configured to estimate a constellation gain value from the folded first portion and the second portion of the scalar data representation.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: November 8, 2011
    Assignee: MediaTek Inc.
    Inventors: Carsten Aagaard Pedersen, John Zijun Shen, Aiguo Yan, Deepak Mathew, Marko Kocic, Timothy Perrin Fisher-Jeffes, Thomas Keller
  • Publication number: 20090175205
    Abstract: An apparatus for processing signals in a wireless system includes a first memory module to receive input data from a set of physical channels, a first plurality of sub-modules to process the input data. Each of the first plurality of sub-modules is selected to function based upon data and transmission channel specifications. The apparatus also includes a second memory module to receive processed input data and output intermediate data. Locations of the input data in the second memory is allocated in connection with data and transmission channel specifications. The apparatus also includes a second plurality of sub-modules to process the intermediate data. Each of the second plurality of sub-modules is selected to function based upon data and transmission channel specifications. The apparatus also includes a third memory module to receive and output bit rate processing output.
    Type: Application
    Filed: August 27, 2008
    Publication date: July 9, 2009
    Inventors: Deepak Mathew, Eric Aardoom, Timothy Perrin Fisher-Jeffes, David Stephen Ivory, Carsten Aagaard Pedersen, Aiguo Yan
  • Publication number: 20090161648
    Abstract: A wireless device has a BRP-CRP interface that includes a dual-port frame memory having a first access port and a second access port in which data can be written to the dual-port frame memory through the first access port at the same time that data is read from the dual-port frame memory through the second access port. A bit rate processor performs bit rate processing on input data and writes data resulting from the bit rate processing to the dual-port frame memory through the first access port. A chip rate processor reads data from the dual-port frame memory through the second access port and performs chip rate processing on the data read from the dual-port frame memory. A data processor executes a software application that writes data to the dual-port frame memory through the first access port and reads data from the dual-port frame memory through the second access port.
    Type: Application
    Filed: August 19, 2008
    Publication date: June 25, 2009
    Inventors: Deepak MATHEW, Russ MESTECHKIN, Prahallada PONNATHOTA, Thomas F. HOWE, Timothy Perrin FISHER-JEFFES
  • Publication number: 20090161745
    Abstract: A system includes a receiver for receiving a modulated signal. The receiver includes a gain estimator for converting complex data representative of constellation points of the modulated signal into scalar data representation. The gain estimator is configured to fold a first portion of the scalar data representation onto a second portion of the scalar data representation. The gain estimator is further configured to estimate a constellation gain value from the folded first portion and the second portion of the scalar data representation.
    Type: Application
    Filed: August 11, 2008
    Publication date: June 25, 2009
    Inventors: Carsten Aagaard Pedersen, John Zijun Shen, Aiguo Yan, Deepak Mathew, Marko Kocic, Timothy Perrin Fisher-Jeffes, Thomas Keller
  • Publication number: 20090165019
    Abstract: A method includes receiving data in a first data processing module, and enabling a second data processing module when at least one signal time slot of the received data comprises data that complies with a first data transmission standard. The method also includes exchanging signals between the first data processing module and software executing in a processor, and determining that a software configuration of the second data processing module has been completed. The method also includes processing the data in the second data processing module for the at least one signal time slot, and enabling a third data processing module upon a completion of processing at least one data block in the second data processing module, and determining that a software configuration of the third data processing module has been completed, the at least one data block comprising multiple signal time slots.
    Type: Application
    Filed: October 20, 2008
    Publication date: June 25, 2009
    Applicant: MediaTek Inc.
    Inventors: John Zijun Shen, Carsten Aagaard Pedersen, Deepak Mathew, Paul Donald Krivacek, Aiguo Yan, Timothy Perrin Fisher-Jeffes
  • Publication number: 20090161647
    Abstract: A wireless system has an uplink chip rate processing architecture in which at least two groups of registers are provided, each group of register storing a set of time slot configuration parameters. A storage stores a sequence of time slot configuration set identifiers each identifying one of the groups of registers, each identifier corresponding to a time slot. A chip rate processing unit processes a stream of data over a plurality of time slots in which at each of the time slots, and the chip rate processing unit is configured according to the set of time slot configuration parameters stored in the group of register associated with the time slot configuration set identifier corresponding to the time slot.
    Type: Application
    Filed: August 19, 2008
    Publication date: June 25, 2009
    Inventors: Russ Mestechkin, Deepak Mathew, Justin Wang, Sanjay Nandipaku
  • Publication number: 20090081973
    Abstract: Methods and apparatus are provided for controlling transmitted power in a wireless system. The method includes generating information to be transmitted as a series of signal bursts, with a time interval between successive signal bursts, controlling individually a power level of each of said signal bursts with a power control signal to provide output signal bursts to be transmitted, and asserting a new power value of the power control signal during the time interval preceding each signal burst. The wireless system can be a TDSCDMA wireless system, and the signal bursts can be uplink signal bursts.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Applicant: Analog Devices, Inc.
    Inventors: Aiguo Yan, Jonathan Richard Strange, Bernard Mark Tenbroek, Deepak Mathew, Liang Ma
  • Publication number: 20080080542
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Applicant: Analog Devices, Inc.
    Inventors: Krishnan Vishwanathan, Deepak Mathew, Eric Aardoom, Lidwine Martinot, Aiguo Yan, Timothy Fisher-Jeffes, Paul D. Krivacek
  • Publication number: 20080080443
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Applicant: Analog Devices, Inc.
    Inventors: Lidwine Martinot, Deepak Mathew, Krishnan Vishwanathan, Eric Aardoom, Aiguo Yan, Timothy Fisher-Jeffes
  • Publication number: 20080081575
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Applicant: Analog Devices, Inc.
    Inventors: Deepak Mathew, Aiguo Yan, Krishnan Vishwanathan, Eric Aardoom, Timothy Fisher-Jeffes
  • Publication number: 20080080444
    Abstract: A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Applicant: Analog Devices, Inc.
    Inventors: Timothy Fisher-Jeffes, Deepak Mathew, Krishnan Vishwanathan, Eric Aardoom, Aiguo Yan
  • Patent number: 7336699
    Abstract: A system and method are provided for determining whether a chipping code from a group of codes is used in a signal. In one embodiment of the invention, a signal is received and each code from the group is correlated with the received signal. The ratio of the highest correlation value to the second highest correlation value is calculated. If the ratio exceeds a threshold, the chipping code may be determined as the chipping code used in the signal. In another embodiment, the ratio of the highest correlation value and the total received power of the signal is calculated. If the ratio exceeds a threshold, the chipping code may be determined as the chipping code used in the signal.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 26, 2008
    Assignee: Analog Devices, Inc.
    Inventors: Deepak Mathew, Aiguo Yan, Zoran Zvonar, Abhay Sharma
  • Patent number: RE42744
    Abstract: A method of sending feedback information in a fast physical layer hybrid automatic repeat request (HARQ) for frequency division duplex communications that form an overall wireless communication system is described in which the received packets are acknowledged by transmitting feedback data to the sender, wherein the acknowledgement comprises the reservation of obtaining a plurality of slots in the uplink/downlink dedicated channel radio frame for the feedback data alone. It is also directed to the transmission of feedback data used in specified slots within each radio frame, wherein the first slot used is based upon the time offset between uplink and downlink channels, as well as based upon the time required for de-interleaving, de-ratematching, decoding and error checking. In an alternative embodiment, the method uses dedicated physical control channel (DPCCH) bits in at least some of the slots for transmitting such feedback data to the sender.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: September 27, 2011
    Assignee: Nokia Corporation
    Inventors: Esa Malkamaki, Deepak Mathew, Kari Pehkonen, Jussi Kahtava