Patents by Inventor Deepak Upadhyaya

Deepak Upadhyaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230233967
    Abstract: The present disclosure relates to a method for manufacturing an air filtration material, in which the porous metallic support is treated with at least one chemical agent to improve adherence of the electrospun nanofibers. The air filtration material obtained from such method comprises nanoparticle photocatalysts, wherein the nanoparticle photocatalysts are embedded in the electrospun nanofibers and part of the nanoparticle photocatalysts is exposed at the surface of the electrospun nanofibers through nanopores. An air filtration device, comprising the air filtration material, a UV LED and a power source. A method of using the air filtration material wherein an air flow passes through the air filtration material, wherein the air flow has a pollutant content before passing through the material, in order to decrease the air pollutant content. The nanoparticle photocatalysts inactivate or kill the pathogens when the device is in operation.
    Type: Application
    Filed: January 21, 2023
    Publication date: July 27, 2023
    Inventors: Deepak Upadhyaya, Mark Edward Leong
  • Publication number: 20230010970
    Abstract: A cell of Li-ion battery comprises a plurality of anodes and cathodes of rectangular shape, each one having a current collector tab protruding from a side of the rectangular shape. Each cathode is wrapped in a separator sheet and the cathodes and anodes are stacked on each other. A Li-ion battery comprises a stack of cells and at least four bus bar posts, each bus bar post being positioned in front of one tab in order to create an electrical connection between the tab and the bus bar post. A method for disassembling the battery comprises—holding the anode bus bar posts, and simultaneously pulling the cathode bus bar posts in the direction of the cathode tab protrusions, pulling the anode bus bar posts in the direction of the anode tab protrusions, separating the cathodes from the separators, and separating electrodes from the bus bar posts.
    Type: Application
    Filed: May 3, 2022
    Publication date: January 12, 2023
    Inventor: Deepak Upadhyaya
  • Patent number: 10297425
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: May 21, 2019
    Assignee: SUB-ONE TECHNOLOGY, LLC.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Patent number: 10221485
    Abstract: Electrochemical cells for a lithium-ion battery are formed on a conductive wire substrate drawn through a multi-chamber deposition reactor, then assembled together in series and parallel connection to create a fail-safe battery. The wire substrate acts as current-limiting fuse that melts when there is a short affecting that cell, while remaining cells of the battery continue to operate. Each cell has solid-state thin film layers concentrically nucleated and grown over a length of the wire substrate as it is drawn through the successive deposition sections, including at least a first electrochemical active material layer, ion-exchange material layer, a second electrochemical active material layer, which is followed by deposition of a conductive layer forming an outer current collector and hermetic seal for the cell. The active material layers form electrodes (cathode and anode), wherein the anode may be formed as a multi-layer composite with stress-absorbing compliant layers.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 5, 2019
    Assignee: Adavolt, Inc.
    Inventors: Deepak Upadhyaya, Mark J. Isaacson
  • Publication number: 20170117573
    Abstract: A battery on a conductive metal wire and components of a battery on a conductive metal wire of circular cross section diameter of 5-500 micrometers and methods of making the battery and battery components are disclosed. In one embodiment, the battery features a porous anode or cathode layer which assist with ion exchange in batteries. Methods of forming the porous anode or cathode layer include deposition of an inert gas or hydrogen enriched carbon or silicon layer on a heated metal wire followed by annealing of the inert gas or hydrogen enriched carbon silicon layer. Energy storage devices having bundles of batteries on wires are also disclosed as are other energy storage devices.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Applicant: Kalptree Energy, Inc.
    Inventor: Deepak Upadhyaya
  • Patent number: 9559380
    Abstract: A battery on a conductive metal wire and components of a battery on a conductive metal wire of circular cross section diameter of 5-500 micrometers and methods of making the battery and battery components are disclosed. In one embodiment, the battery features a porous anode or cathode layer which assist with ion exchange in batteries. Methods of forming the porous anode or cathode layer include deposition of an inert gas or hydrogen enriched carbon or silicon layer on a heated metal wire followed by annealing of the inert gas or hydrogen enriched carbon silicon layer. Energy storage devices having bundles of batteries on wires are also disclosed as are other energy storage devices.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: January 31, 2017
    Assignee: KALPTREE ENERGY, INC.
    Inventor: Deepak Upadhyaya
  • Publication number: 20150221974
    Abstract: A battery having a laminate structure of alternating layers of polymer matrix material and solid-state battery elements is fabricated. Individual solid-state battery elements are created in a deposition apparatus, each battery element having successive solid-state thin films concentrically formed over a conductive wire substrate to define anode, electrolyte and cathode active layers sandwiched between inner and outer current collectors. Inner current collectors are electrically coupled to each other (and likewise the outer current collectors) such that battery elements are connected in a specified series and parallel arrangement. Sets of the individual battery elements are laid upon cloth layers such that outer current collectors of the battery elements physically contact the cloth and the cloth layers are impregnated with selected thermoplastic or thermosetting resin, the impregnated cloth layers and their respective contacting battery elements are stacked to form a composite laminate.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 6, 2015
    Applicant: KALPTREE ENERGY, INC.
    Inventors: Deepak Upadhyaya, Mark Isaacson, Michael D. Sword, Gregory D. Hitchan, Brook E. Van Muijen
  • Publication number: 20150093621
    Abstract: A battery on a conductive metal wire and components of a battery on a conductive metal wire of circular cross section diameter of 5-500 micrometers and methods of making the battery and battery components are disclosed. In one embodiment, the battery features a porous anode or cathode layer which assist with ion exchange in batteries. Methods of forming the porous anode or cathode layer include deposition of an inert gas or hydrogen enriched carbon or silicon layer on a heated metal wire followed by annealing of the inert gas or hydrogen enriched carbon silicon layer. Energy storage devices having bundles of batteries on wires are also disclosed as are other energy storage devices.
    Type: Application
    Filed: December 1, 2014
    Publication date: April 2, 2015
    Inventor: Deepak Upadhyaya
  • Patent number: 8993172
    Abstract: A battery on a conductive metal wire and components of a battery on a conductive metal wire of circular cross section diameter of 5-500 micrometers and methods of making the battery and battery components are disclosed. In one embodiment, the battery features a porous anode or cathode layer which assist with ion exchange in batteries. Methods of forming the porous anode or cathode layer include deposition of an inert gas or hydrogen enriched carbon or silicon layer on a heated metal wire followed by annealing of the inert gas or hydrogen enriched carbon silicon layer. Energy storage devices having bundles of batteries on wires are also disclosed as are other energy storage devices.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Kalptree Energy, Inc.
    Inventor: Deepak Upadhyaya
  • Publication number: 20140227464
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: Sub-One Technology, Inc.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Patent number: 8715789
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 6, 2014
    Assignee: Sub-One Technology, Inc.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Publication number: 20130344363
    Abstract: A battery on a conductive metal wire and components of a battery on a conductive metal wire of circular cross section diameter of 5-500 micrometers and methods of making the battery and battery components are disclosed. In one embodiment, the battery features a porous anode or cathode layer which assist with ion exchange in batteries. Methods of forming the porous anode or cathode layer include deposition of an inert gas or hydrogen enriched carbon or silicon layer on a heated metal wire followed by annealing of the inert gas or hydrogen enriched carbon silicon layer. Energy storage devices having bundles of batteries on wires are also disclosed as are other energy storage devices.
    Type: Application
    Filed: December 7, 2012
    Publication date: December 26, 2013
    Inventor: Deepak Upadhyaya
  • Patent number: 8394197
    Abstract: Enhanced corrosion resistance is achieved in a coating by using a germanium-containing precursor and hollow cathode techniques to form a first layer directly on the surface of a workpiece, prior to forming an outer layer, such as a layer of diamond-like carbon (DLC). The use of a germanium or germanium-carbide precursor reduces film stress and enables an increase in the thickness of the subsequently formed DLC. Germanium incorporation also reduces the porosity of the layer. In one embodiment, a cap layer containing germanium is added after the DLC in order to further reduce the susceptibility of the coating to chemical penetration from the top.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 12, 2013
    Assignee: Sub-One Technology, Inc.
    Inventors: Andrew W. Tudhope, Thomas B. Casserly, Karthik Boinapally, Deepak Upadhyaya, William J. Boardman
  • Patent number: 8343593
    Abstract: A method of coating at least one exterior surface of at least one workpiece is disclosed. The method may be used for coating inner and outer surfaces of pipes. A hollow workpiece is positioned within a chamber. A spacing between a multi-dimensional interior surface of the chamber and an exterior surface of the workpiece is fixed. Conditions are established to maintain a hollow cathode effect within the spacing and within the hollow workpiece. The conditions include biasing anodes at opposite ends of a hollow cathode effect region, and biasing the interior surface of the chamber and the workpiece as cathodes. The interior surface and the workpiece may be maintained at a common bias voltage or, in at least one embodiment, at differing voltages.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 1, 2013
    Assignee: Sub-One Technology, Inc.
    Inventors: William J. Boardman, Thomas B. Casserly, Deepak Upadhyaya, Karthik Boinappaly, Rahul Ramamurti
  • Publication number: 20110151141
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 23, 2011
    Applicant: SUB-ONE TECHNOLOGY, INC.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Publication number: 20090311443
    Abstract: In accordance with one embodiment of the invention, a workpiece having a smaller cross sectional dimension (e.g., diameter) is centered within a workpiece having a larger cross sectional dimension, with the workpieces being electrically connected. In this embodiment, surfaces of the two workpieces can be coated simultaneously, either with the same coating material or different coating materials. In another embodiment, holes are located along the length of an internal metal tube which functions as a gas distribution injector and anode holder. A ceramic liner may be placed inside the internal metal tube, with a conductive wire within the ceramic liner. The internal metal tube may be biased as a cathode, while the internal wire is biased as an anode. The hollow cathode effect is applied in all spaces directly adjacent to the surface or surfaces being coated. In some applications, different surfaces being coated are biased at different voltages.
    Type: Application
    Filed: May 13, 2009
    Publication date: December 17, 2009
    Applicant: SUB-ONE TECHNOLOGY INC.
    Inventors: William J. Boardman, Thomas B. Casserly, Deepak Upadhyaya, Karthik Boinappaly, Rahul Ramamurti
  • Patent number: 7629031
    Abstract: Plasma Enhanced Bonding (PEB) during a coating process is used to improve both adhesion and corrosion resistance of the resulting coating. New interfacial compounds may be formed, offering the increased resistance to corrosion, as well as enhanced bonding to the workpiece being coated and any subsequently formed layer, such as diamond-like carbon. In one embodiment, the PEB processing is employed during coating of at least one interior surface of the workpiece, which may be a pipe. In a first step, a thin film is deposited. Then, the film is exposed to a high energy etch-back plasma. This two-step cycle of depositing a film and then providing bombardment of the film may be repeated a number of times. Typically, the deposition step of the cycle is much shorter than the bombardment step.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: December 8, 2009
    Assignee: Sub-One Technology, Inc.
    Inventors: Charles N. Dornfest, Deepak Upadhyaya, William John Boardman, Karthik Boinapally
  • Publication number: 20090029067
    Abstract: The invention relates to a method for forming high sp3 content amorphous carbon coatings deposited by plasma enhanced chemical vapor deposition on external surfaces. This method allows adjustment of tribological properties, such as hardness, Young's modulus, wear resistance and coefficient of friction as well as optical properties, such as refractive index. In addition the resulting coatings are uniform and have high corrosion resistance. By controlling pressure, type of diamondoid precursor and bias voltage, the new method prevents the diamondoid precursor from fully breaking upon impact with the substrate. The diamondoid retains sp3 bonds which yields a high sp3 content film at higher pressure. This enables a faster deposition rate than would be possible without the use of a diamondoid precursor.
    Type: Application
    Filed: May 1, 2008
    Publication date: January 29, 2009
    Inventors: Steven F. Sciamanna, Andrew W. Tudhope, Robert M. Carlson, William J. Boardman, Thomas B. Casserly, Pankaj Jyoti Hazarika, Deepak Upadhyaya
  • Publication number: 20090017222
    Abstract: Plasma Enhanced Bonding (PEB) during a coating process is used to improve both adhesion and corrosion resistance of the resulting coating. New interfacial compounds may be formed, offering the increased resistance to corrosion, as well as enhanced bonding to the workpiece being coated and any subsequently formed layer, such as diamond-like carbon. In one embodiment, the PEB processing is employed during coating of at least one interior surface of the workpiece, which may be a pipe. In a first step, a thin film is deposited. Then, the film is exposed to a high energy etch-back plasma. This two-step cycle of depositing a film and then providing bombardment of the film may be repeated a number of times. Typically, the deposition step of the cycle is much shorter than the bombardment step.
    Type: Application
    Filed: December 31, 2007
    Publication date: January 15, 2009
    Inventors: Charles N. Dornfest, Deepak Upadhyaya, William John Boardman, Karthik Boinapally
  • Publication number: 20090017230
    Abstract: Enhanced corrosion resistance is achieved in a coating by using a germanium-containing precursor and hollow cathode techniques to form a first layer directly on the surface of a workpiece, prior to forming an outer layer, such as a layer of diamond-like carbon (DLC). The use of a germanium or germanium-carbide precursor reduces film stress and enables an increase in the thickness of the subsequently formed DLC. Germanium incorporation also reduces the porosity of the layer. In one embodiment, a cap layer containing germanium is added after the DLC in order to further reduce the susceptibility of the coating to chemical penetration from the top.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Inventors: Andrew W. Tudhope, Thomas B. Casserly, Karthik Boinapally, Deepak Upadhyaya, William J. Boardman