Patents by Inventor Deepika Priyadarshini

Deepika Priyadarshini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9934963
    Abstract: Multilayer dielectric structures are provided with graded composition. For example, a multilayer dielectric structure includes a stack of dielectric films, wherein the dielectric films include at least a first SiCNO (silicon carbon nitride oxide) film and a second SiCNO film. The first SiCNO film has a first composition profile of C, N, and O atoms. The second SiCNO film has a second composition profile of C, N, and O atoms, which is different from the first composition profile of C, N, and O atoms. The composition profiles of C, N and/or O atoms of the constituent dielectric films of the multilayer dielectric structure are customized to enhance or otherwise optimize one or more electrical and/or physical properties of the multilayer dielectric structure.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Son V. Nguyen, Deepika Priyadarshini
  • Publication number: 20180090371
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: Daniel C. EDELSTEIN, Son V. NGUYEN, Takeshi NOGAMI, Deepika PRIYADARSHINI, Hosadurga K. SHOBHA
  • Publication number: 20180090418
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180090587
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180090588
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180082894
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Daniel C. EDELSTEIN, Son V. NGUYEN, Takeshi NOGAMI, Deepika PRIYADARSHINI, Hosadurga K. SHOBHA
  • Publication number: 20180047568
    Abstract: Multilayer dielectric structures are provided with graded composition. For example, a multilayer dielectric structure includes a stack of dielectric films, wherein the dielectric films include at least a first SiCNO (silicon carbon nitride oxide) film and a second SiCNO film. The first SiCNO film has a first composition profile of C, N, and O atoms. The second SiCNO film has a second composition profile of C, N, and O atoms, which is different from the first composition profile of C, N, and O atoms. The composition profiles of C, N and/or O atoms of the constituent dielectric films of the multilayer dielectric structure are customized to enhance or otherwise optimize one or more electrical and/or physical properties of the multilayer dielectric structure.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Inventors: Son V. Nguyen, Deepika Priyadarshini
  • Publication number: 20170358533
    Abstract: Low-temperature techniques for doping of Cu interconnects based on interfacially-assisted thermal diffusion are provided. In one aspect, a method of forming doped copper interconnects includes the steps of: patterning at least one trench in a dielectric material; forming a barrier layer lining the trench; forming a metal liner on the barrier layer; depositing a seed layer on the metal liner; plating a Cu fill into the trench to form Cu interconnects; removing a portion of a Cu overburden to access an interface between the metal liner and the Cu fill; depositing a dopant layer; and diffusing a dopant(s) from the dopant layer along the interface to form a Cu interconnect doping layer between the metal liner and the Cu fill. Alternatively, the overburden and the barrier layer/metal liner can be completely removed, and the dopant layer deposited selectively on the Cu fill. An interconnect structure is also provided.
    Type: Application
    Filed: August 7, 2017
    Publication date: December 14, 2017
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Chao-Kun Hu, Takeshi Nogami, Deepika Priyadarshini, Michael Rizzolo
  • Publication number: 20170317032
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini
  • Patent number: 9793193
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Patent number: 9786760
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 10, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20170263451
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170263449
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9754891
    Abstract: Low-temperature techniques for doping of Cu interconnects based on interfacially-assisted thermal diffusion are provided. In one aspect, a method of forming doped copper interconnects includes the steps of: patterning at least one trench in a dielectric material; forming a barrier layer lining the trench; forming a metal liner on the barrier layer; depositing a seed layer on the metal liner; plating a Cu fill into the trench to form Cu interconnects; removing a portion of a Cu overburden to access an interface between the metal liner and the Cu fill; depositing a dopant layer; and diffusing a dopant(s) from the dopant layer along the interface to form a Cu interconnect doping layer between the metal liner and the Cu fill. Alternatively, the overburden and the barrier layer/metal liner can be completely removed, and the dopant layer deposited selectively on the Cu fill. An interconnect structure is also provided.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: September 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Chao-Kun Hu, Takeshi Nogami, Deepika Priyadarshini, Michael Rizzolo
  • Patent number: 9735005
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9711507
    Abstract: A method for forming a semiconductor device includes blocking a first region of a wafer and forming a plurality of fins in a second region of the wafer. A protective conformal mask layer is deposited over the plurality of fins in the second region, the second region is blocked, and a plurality of fins are formed in the first region of the wafer using a variety of wet and/or dry etching procedures. The protective conformal mask layer protects the plurality of fins in the second region from the variety of wet and/or dry etching procedures that are used to form the plurality of fins in the first region.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isabel C. Chu, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Mona A. Ebrish, Gauri Karve, Fee Li Lie, Deepika Priyadarshini, Nicole A. Saulnier, Indira P. Seshadri
  • Patent number: 9711455
    Abstract: A semiconductor substrate including one or more conductors is provided. A first layer and a second layer are deposited on the top surface of the conductors. A dielectric cap layer is formed over the semiconductor substrate and air gaps are etched into the dielectric layer. The result is a bilayer cap air gap structure with effective electrical performance.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Elbert E. Huang, Dimitri R. Kioussis, Christopher J. Penny, Deepika Priyadarshini
  • Patent number: 9711456
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Grant
    Filed: December 19, 2015
    Date of Patent: July 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini
  • Patent number: 9691705
    Abstract: An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Daniel C. Edelstein, Alfred Grill, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170179034
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Application
    Filed: December 19, 2015
    Publication date: June 22, 2017
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini