Patents by Inventor Deepukumar M. Nair

Deepukumar M. Nair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7855685
    Abstract: A microwave communication package is constructed on an electrically conducting base plate having a first side defining a base plate cavity, with an antenna apparatus mounted on an opposite, second side. A dielectric substrate on the first side of the base plate covers the base plate cavity; and sealing apparatus contacting the dielectric substrate and the base plate completely around the base plate cavity hermetically seals the cavity. Circuitry mounted on a surface of the substrate within the base plate cavity includes one or more microstrip lines communicating components to one or more waveguides comprising openings extending through the base plate; and the waveguides are coupled at their opposite ends to the antenna apparatus.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 21, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Matthew R. Walsh, Deepukumar M. Nair, David W. Zimmerman, Benjamen E. Haffke, Scott D. Brandenburg, Charles I. Delheimer, Michael E. Miller, Bruce Wayne Butler
  • Publication number: 20100270646
    Abstract: Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 28, 2010
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: CHEONG-WO HUNTER CHAN, Lynne E. Dellis, Fuhan Liu, David Ross McGregor, Venkatesh Sundaram, Deepukumar M. Nair
  • Publication number: 20100270645
    Abstract: Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode of the thin-film capacitor comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 28, 2010
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: DAVID ROSS MCGREGOR, Cheong-Wo Hunter Chan, Lynne E. Dellis, Fuhan Liu, Deepukumar M. Nair, Venkatesh Sundaram
  • Patent number: 7586444
    Abstract: A high-frequency Electromagnetic Bandgap (EBG) device, and a method for making the device are provided. The device includes a first substrate including multiple conducting vias forming a periodic lattice. The vias of the first substrate extend from the lower surface of the first substrate to the upper surface of the first substrate. The device also includes a second substrate having multiple conducting vias forming a periodic lattice. The vias of the second substrate extend from the lower surface of the second substrate to the upper surface of the second substrate. The second substrate is positioned adjacent to, and overlapping, the first substrate, such that the lower surface of the second substrate is in contact with the upper surface of the first substrate, and such that a plurality of vias of the second substrate are in contact with a corresponding plurality of vias of the first substrate.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Carl W. Berlin, Deepukumar M. Nair
  • Publication number: 20090085808
    Abstract: A microwave communication package is constructed on an electrically conducting base plate having a first side defining a base plate cavity, with an antenna apparatus mounted on an opposite, second side. A dielectric substrate on the first side of the base plate covers the base plate cavity; and sealing apparatus contacting the dielectric substrate and the base plate completely around the base plate cavity hermetically seals the cavity. Circuitry mounted on a surface of the substrate within the base plate cavity includes one or more microstrip lines communicating components to one or more waveguides comprising openings extending through the base plate; and the waveguides are coupled at their opposite ends to the antenna apparatus.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Matthew R. Walsh, Deepukumar M. Nair, David W. Zimmerman, Benjamen E. Haffke, Scott D. Brandenburg, Charles I. Delheimer, Michael E. Miller, Bruce Wayne Butler
  • Publication number: 20080142911
    Abstract: A high-frequency Electromagnetic Bandgap (EBG) motion sensor device, and a method for making such a device are provided. The device includes a substantially planar substrate including multiple conducting vias forming a periodic lattice in the substrate. The vias extend from the lower surface of the substrate to the upper surface of the substrate. The device also includes a movable defect positioned in the periodic lattice. The movable defect is configured to move relative to the plurality of vias. A resonant frequency of the Electromagnetic Bandgap (EBG) motion sensor device varies based on movement of the movable defect.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Inventors: Carl W. Berlin, Deepukumar M. Nair, David W. Zimmerman, Dwadasi H.R. Sarma
  • Publication number: 20080129645
    Abstract: A high-frequency Electromagnetic Bandgap (EBG) device, and a method for making the device are provided. The device includes a first substrate including multiple conducting vias forming a periodic lattice. The vias of the first substrate extend from the lower surface of the first substrate to the upper surface of the first substrate. The device also includes a second substrate having multiple conducting vias forming a periodic lattice. The vias of the second substrate extend from the lower surface of the second substrate to the upper surface of the second substrate. The second substrate is positioned adjacent to, and overlapping, the first substrate, such that the lower surface of the second substrate is in contact with the upper surface of the first substrate, and such that a plurality of vias of the second substrate are in contact with a corresponding plurality of vias of the first substrate.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Carl W. Berlin, Deepukumar M. Nair
  • Patent number: 6731853
    Abstract: An optical fiber clamp that precisely aligns and clamps multiple optical fibers in multi-channel freespace optical systems, eliminates multiple parts and simplifies assembly. Multiple wafers each having an array of holes passing therethrough, are aligned with respect to each other. Optical fibers are passed through the holes, and at least one of the wafers is moved laterally with respect to the other wafers, so that sidewalls of the holes clamp the optical fibers into a desired location.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: May 4, 2004
    Assignee: Corning Incorporarted
    Inventors: Robert A. Boudreau, Chris P. Brophy, Lawrence Charles Hughes, Jr., Mark F. Krol, Deepukumar M. Nair, Songsheng Tan, Aniruddha S. Weling
  • Publication number: 20020131752
    Abstract: An optical fiber clamp that precisely aligns and clamps multiple optical fibers in multi-channel freespace optical systems, eliminates multiple parts and simplifies assembly. Multiple wafers each having an array of holes passing therethrough, are aligned with respect to each other. Optical fibers are passed through the holes, and at least one of the wafers is moved laterally with respect to the other wafers, so that sidewalls of the holes clamp the optical fibers into a desired location.
    Type: Application
    Filed: August 14, 2001
    Publication date: September 19, 2002
    Inventors: Robert A. Boudreau, Chris P. Brophy, Lawrence Charles Hughes, Mark F. Krol, Deepukumar M. Nair, Songsheng Tan, Aniruddha S. Weling