Patents by Inventor Dennis J. O'Rear

Dennis J. O'Rear has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040013987
    Abstract: Novel methods of providing fuels to a gas-to-liquids facility are disclosed. A gas-to-liquids facility typically operates in a remote location and therefore must supply its own energy needs. These facilities are often sustained by fuels having different heating values, and for smooth operation while transitioning from one fuel to another, (such as during startup, shut down, and emergencies) the Wobbe Indices of the two fuels cannot greatly vary from one another. According to embodiments of the present invention, the Wobbe Index of either or both of the fuels is adjusted such that their ratio is less than or equal to about 3. The fuel having the higher Wobbe Index may be natural gas, and materials such as nitrogen, carbon dioxide and flue gas may be added to lower its Wobbe Index. The fuel having the lower Wobbe Index may be the tail gas of a Fischer-Tropsch synthesis, and materials such as methane, ethane, LPG, or natural gas may be added to raise its Wobbe Index.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 22, 2004
    Inventors: Dennis J. O'Rear, Andre Peter Steynberg, Roger Van Gelder
  • Publication number: 20030236312
    Abstract: The present invention relates to a process for the production of a blended syngas feed with a variable H2/CO ratio for use in a syngas conversion reactor. In this process a H2/CO ratio of from approximately 1.0 to 3.0 for the blended syngas feed is selected. A first syngas is formed with a H2/CO ratio of at least 2.0 by reacting methane with an oxygen source. A second syngas is formed with a H2/CO ratio of no more than 1.5 by reacting LPG with CO2. The first syngas and the second syngas are blended to form a blended syngas feed with the selected H2/CO ratio, and this blended syngas feed may be used in the syngas conversion reactor.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 25, 2003
    Inventor: Dennis J. O'Rear
  • Patent number: 6667347
    Abstract: A method for removing CO2 from a gas stream, including methane and CO2. The method includes contacting a gas stream with an aqueous stream, so that at least a portion of the CO2 in the gas stream is dissolved into the aqueous stream, thereby creating a CO2-depleted gas stream, having an enriched methane concentration, and a CO2-enriched aqueous stream. The CO2-enriched aqueous stream is separated from the gas stream. Finally, the CO2-enriched aqueous stream is disposed of in at least one of a marine environment, a terrestrial formation or combination thereof.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: December 23, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Curtis Munson
  • Publication number: 20030203983
    Abstract: Unreacted syngas containing CO2 from a Fischer-Tropsch synthesis reactor, a methanol synthesis reactor or a dual functional syngas conversion is scrubbed with an aqueous medium to adsorb at least some of the CO2. At least a portion of the unreacted CO2-depleted syngas is then recycled to the reactor. The aqueous medium containing absorbed CO2 is treated to desorb CO2. A CO2-enriched stream and a CO2-depleted stream are recovered. A portion of the CO2-enriched stream may be recycled to a syngas generator while another portion is dissolved in an aqueous phase and disposed in a marine environment and/or a terrestrial formation. The CO2-depleted stream preferably is used in the scrubber to absorb CO2 from the unreacted syngas. The process reduces the amount of CO2 released into the atmosphere while improving the over-all efficiency of the syngas conversion process.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Inventors: Dennis J. O'Rear, Curtis L. Munson, Daniel Chinn
  • Patent number: 6635171
    Abstract: A process for treating nitrogen-containing, substantially paraffinic product derived from a Fischer-Tropsch process. The substantially paraffinic product is purified in a purification process to lower the concentration of oxygen, nitrogen, and other impurities. The nitrogen content of the purified product is monitored, and the conditions of the purification step are adjusted to increase nitrogen removal if the nitrogen content of the purified product exceeds a preselected value.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: October 21, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: John M. Rosenbaum, Christopher A. Simmons, Dennis J. O'Rear
  • Publication number: 20030191198
    Abstract: Light olefins including LPG contained in unreacted tail gas from a Fischer-Tropsch process are catalytically condensed using an acidic oligomerization/aromatization catalyst to form higher molecular weight C5+ products. Thus, C3-C4 olefins are readily separated from the tail gas and upgraded to more valuable products. In one embodiment, the condensation is conducted on a mixed gas stream of fresh synthesis gas and tail gas from a Fischer-Tropsch process. In another embodiment, the condensation is conducted on a syngas feed to a Fischer-Tropsch reactor and removes a significant portion of catalytically poisonous nitrogen compounds.
    Type: Application
    Filed: April 4, 2002
    Publication date: October 9, 2003
    Inventors: Dennis J. O'Rear, Stephen J. Miller
  • Publication number: 20030191199
    Abstract: Provided is a process for reducing CO2 emissions generated by a Fischer-Tropsch GTL facility. The process includes introducing a synthesis gas into a Fischer-Tropsch reactor and performing a Fischer-Tropsch process to produce a Fischer-Tropsch product and CO2. At least a portion of the CO2 from the Fischer-Tropsch reactor is fed into at least one of a feed stream being fed to a synthesis gas formation reactor, producing the synthesis gas, or the synthesis gas being fed into the Fischer-Tropsch reactor. In addition, naphtha is obtained from the Fischer-Tropsch product and is fed into a naphtha reformer. Naphtha reforming is conducted, generating hydrogen by-product and C6-C10 product. At least a portion of the hydrogen by-product, generated during naphtha reforming, is fed into the feed stream, converting at least a portion of the CO2 in the feed stream into additional CO. Finally, the additional CO is converted into hydrocarbons in the Fischer-Tropsch reactor.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventor: Dennis J. O'Rear
  • Publication number: 20030191197
    Abstract: Provided is a process for converting CO2-rich natural gas into liquid fuel. The process includes introducing a CO2-rich natural gas feed stream into a synthesis gas formation reactor and then forming a synthesis gas. At least a portion of the synthesis gas is then introduced into a Fischer-Tropsch reactor. A Fischer-Tropsch process is conducted generating a Fischer-Tropsch product. A naphtha is separated from the Fischer-Tropsch product and introduced into a naphtha reformer. Hydrogen by-product is generated by reforming the naphtha to obtain a C6-C10 product having a hydrogen to carbon ratio less than about 2.0. At least a portion of the hydrogen by-product is recirculated and mixed with the CO2-rich natural gas feed stream.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventor: Dennis J. O'Rear
  • Patent number: 6627779
    Abstract: The invention provides methods for preparing a blended lube base oils comprising at least one highly paraffinic Fischer Tropsch lube base stocks and at least one base stock composed of alkylaromatics, alkylcycloparaffins, or mixtures thereof. The use of base stocks composed of alkylaromatics, alkylcycloparaffins, or mixtures thereof improves the yield of lube base oils from Fischer Tropsch facilities, as well as provides moderate improvements in physical properties including additive solubility. The invention provides processes for obtaining such blended lube base oils using the products of Fischer Tropsch processes.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 30, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Dennis J. O'Rear
  • Patent number: 6626122
    Abstract: The present invention relates to the use of deactivatable biocides in ballast water aboard a vessel. The present invention relates to methods of limiting the transfer of one or more life forms via ballast water comprising mixing an effective amount of the deactivatable biocide with the ballast water and irreversibly deactivating the deactivatable biocides before or upon discharge of the ballast water.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: September 30, 2003
    Assignee: Chevron U.S.A. Inc
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Mark R. Buetzow, Brian V. Dorsch
  • Patent number: 6620091
    Abstract: A method for removing CO2 from a CO2-containing hydrocarbon asset. The process includes contacting a CO2-containing hydrocarbon asset with an aqueous liquid stream at an underwater location so that at least a portion of the CO2 in the hydrocarbon asset is dissolved into the aqueous liquid stream, creating a CO2-depleted hydrocarbon asset and a CO2-enriched aqueous stream. The CO2-enriched aqueous stream is separated from the hydrocarbon asset. Finally, the CO2-enriched aqueous stream is disposed of in at least one of a marine environment, a terrestrial formation, or combination thereof.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 16, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: A. Stephen Zavell, Dennis J. O'Rear, Curtis Munson
  • Publication number: 20030166982
    Abstract: A Fischer-Tropsch C3-C4 olefin stream is treated to lower the oxygenate content to below 4000 ppm. Another Fischer-Tropsch fraction is hydrotreated and hydrocracked to provide an isobutane-containing stream. The treated C3-C4 olefin stream is reacted with the isobutane stream in an alkylation reactor to provide a highly branched, high octane isoparaffinic alkylate. The alkylate is useful as a blending component in motor gasoline.
    Type: Application
    Filed: January 31, 2002
    Publication date: September 4, 2003
    Inventors: Dennis J. O' Rear, Steven S. Mathur, Thomas Van Harris, Curtis L. Munson, Cong-Yan Chen
  • Publication number: 20030162845
    Abstract: The present invention relates to the use of deactivatable biocides for hydrocarbonaceous products, in particular, rapidly biodegradable hydrocarbonaceous products. The present invention also relates to methods of inhibiting growth and reproduction of microorganisms in hydrocarbonaceous products, in particular, in rapidly biodegradable hydrocarbonaceous products, containing minor amounts of aqueous liquids. The deactivatable biocides of the present invention may be derived from a Fischer-Tropsch process.
    Type: Application
    Filed: October 18, 2001
    Publication date: August 28, 2003
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear
  • Publication number: 20030158456
    Abstract: A Fischer-Tropsch C3-C4 olefin stream is simultaneously dehydrated and isomerized to convert alcohols to olefins and 1-butenes to 2-butenes and thereby lower the oxygenate content. Another Fischer-Tropsch fraction is hydrotreated and hydrocracked to provide an isobutane stream. The treated C3-C4 olefin stream having an oxygenate content less than 4000 ppm, is reacted with the isobutane stream to provide a highly branched, high octane isoparaffinic alkylate. The alkylate is useful as a blending component in motor gasoline.
    Type: Application
    Filed: January 31, 2002
    Publication date: August 21, 2003
    Inventors: Dennis J. O'Rear, Steven S. Mathur, Thomas Van Harris, Curtis Munson, Cong-Yan Chen
  • Publication number: 20030141222
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Publication number: 20030141220
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Publication number: 20030141221
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Publication number: 20030143135
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Publication number: 20030135077
    Abstract: Provided is a process for converting methane at a remote natural gas site into ethylene and other products. Methane is converted into syngas which is converted into a low-sulfur liquid hydrocarbon mixture containing less than 1 ppm sulfur via Fischer-Tropsch (FT) syntheses. The low-sulfur Fischer-Tropsch liquids are transferred from the remote site to an existing facility where a sulfur-containing compound or a sulfur-containing hydrocarbon mixture is added to avoid coking problems. The resultant blend of hydrocarbons which has a sulfur content of at least 1 ppm, is fed to a naphtha cracking unit and ethylene recovered.
    Type: Application
    Filed: January 14, 2002
    Publication date: July 17, 2003
    Inventors: Dennis J. O'Rear, Gunther H. Dieckmann
  • Publication number: 20030127399
    Abstract: The present invention relates to the use of deactivatable biocides in cooling water systems of industrial processes that require dissipation of heat. The present invention relates to methods of inhibiting growth and reproduction of microorganisms in the cooling water comprising adding the deactivatable biocides to the cooling water and irreversibly deactivating the deactivatable biocides before or upon disposal of the cooling water.
    Type: Application
    Filed: October 18, 2001
    Publication date: July 10, 2003
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Richard O. Moore