Patents by Inventor Dennis Miller

Dennis Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100284264
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone copolymers, each of the one or more polyaryletherketone copolymers comprising (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a first phenylethynyl moiety, each of the one or more polyaryletherketone copolymers having two terminal ends, each terminal end having a phenylethynyl moiety the same as or different from the first phenylethynyl moiety. The one or more polyaryletherketone copolymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layer in an atomic force data storage device.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20100273295
    Abstract: A nanoparticle which includes a multi-armed core and surface decoration which is attached to the core is prepared. A multi-armed core is provided by any of a number of possible routes, exemplary preferred routes being living anionic polymerization that is initiated by a reactive, functionalized anionic initiator and ?-caprolactone polymerization of a bis-MPA dendrimer. The multi-armed core is preferably functionalized on some or all arms. A coupling reaction is then employed to bond surface decoration to one or more arms of the multi-armed core. The surface decoration is a small molecule or oligomer with a degree of polymerization less than 50, a preferred decoration being a PEG oligomer with degree of polymerization between 2 and 24. The nanoparticles (particle size ?10 nm) are employed as sacrificial templating porogens to form porous dielectrics. The porogens are mixed with matrix precursors (e.g., methyl silsesquioxane resin), the matrix vitrifies, and the porogens are removed via burnout.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 28, 2010
    Inventors: James Lupton Hedrick, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller
  • Patent number: 7820242
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Patent number: 7811499
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Patent number: 7749915
    Abstract: A method of protecting a polymeric layer from contamination by a photoresist layer. The method includes: (a) forming a polymeric layer over a substrate; (b) forming a non-photoactive protection layer over the polymeric layer; (c) forming a photoresist layer over the protection layer; (d) exposing the photoresist layer to actinic radiation and developing the photoresist layer to form a patterned photoresist layer, thereby exposing regions of the protection layer; (e) etching through the protection layer and the polymeric layer where the protection layer is not protected by the patterned photoresist layer; (f) removing the patterned photoresist layer in a first removal process; and (g) removing the protection layer in a second removal process different from the first removal process.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ute Drechsler, Urs T. Duerig, Jane Elizabeth Frommer, Bernd W. Gotsmann, James Lupton Hedrick, Armin W. Knoll, Tobias Kraus, Robert Dennis Miller
  • Patent number: 7740933
    Abstract: Nanoporous structures are constructed that have hydrophilic regions separated by hydrophobic regions. The porous, hydrophilic regions have reaction sites suitable for use in a bioassay application and have a higher density of reaction sites than that of a non-porous (2-D) surface. The structure may be made by depositing a layer of a matrix material (e.g., an organosilicate) and a porogen, and then crosslinking the matrix material to form a nanohybrid composite structure. The porogen is decomposed to form pores within the matrix material, and a reactive gas phase species (e.g., ozone) is patternwise directed onto a surface of the matrix material. Ultraviolet light (directed through a mask) activates the gas phase species to form a reactive species that then reacts with the matrix material to make it hydrophilic. The porogen may be decomposed thermally or by exposing it to an oxidizing atmosphere in the presence of ultraviolet light.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert Dennis Miller
  • Patent number: 7723438
    Abstract: A nanoparticle which includes a multi-armed core and surface decoration which is attached to the core is prepared. A multi-armed core is provided by any of a number of possible routes, exemplary preferred routes being living anionic polymerization that is initiated by a reactive, functionalized anionic initiator and ?-caprolactone polymerization of a bis-MPA dendrimer. The multi-armed core is preferably functionalized on some or all arms. A coupling reaction is then employed to bond surface decoration to one or more arms of the multi-armed core. The surface decoration is a small molecule or oligomer with a degree of polymerization less than 50, a preferred decoration being a PEG oligomer with degree of polymerization between 2 and 24. The nanoparticles (particle size?10 nm) are employed as sacrificial templating porogens to form porous dielectrics. The porogens are mixed with matrix precursors (e.g., methyl silsesquioxane resin), the matrix vitrifies, and the porogens are removed via burnout.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: James Lupton Hedrick, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller
  • Patent number: 7723458
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20100055307
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 7651872
    Abstract: A biomolecular array includes a substrate across which is distributed an array of discrete regions of a porous substance formed from a porogen-containing organosilicate material. The porous substance is designed to bind chemical targets useful in biotechnology applications, such as gene expression, protein, antibody, and antigen experiments. The regions are preferably optically isolated from each other and may be shaped to enhance detection of optical radiation emanating from the porous substance, e.g., as a result of irradiation of the regions with ultraviolet light. The discrete regions may be configured as microscopic wells within the substrate, or they may reside on top of the substrate in the form of microscopic mesas.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Mark Whitney Hart, Ho-Cheol Kim, Robert Dennis Miller, Gregory Michael Wallraff
  • Publication number: 20090326573
    Abstract: Devices for controlling prolapse. The device includes a base, first and second lobes which protrude from a midsection of the base, and an anchoring knob distal the base. Various portions of the device are inflatable to and are inflated by way of an inflation tube and an inflation device. Some versions of the device include a base, an anchoring knob, and a shat that extends between and connects the base and the anchoring knob, again with portions thereof being inflatable.
    Type: Application
    Filed: March 15, 2007
    Publication date: December 31, 2009
    Inventor: Dennis Miller
  • Patent number: 7558186
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: July 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20090172629
    Abstract: Methods and apparatus to validate continuous signal phase matching in high-speed nets routed as differential pairs are described. In one embodiment, a primary net of a differential pair may be traversed to determine whether a design rule violation has occurred based on comparison of calculated trace lengths of the primary net and a secondary net against a threshold value. Other embodiments are also described.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Howard L. Elikan, Andrew McRonald, Dennis Miller
  • Patent number: 7491277
    Abstract: A cold rolled full hard steel strap usable in a strapping machine has a tensile strength of at least about 125.7 thousand pounds per square inch (KSI) when the strap has a width of about 0.500 inches and a thickness of 0.020 inches. The steel strap is fabricated from a coiled steel formed by hot mill rolling and reduced by cold rolling. The steel strap has a composition of approximately (in weight percent): 0.02 to 0.25 percent carbon, 0.15 to 1.50 percent manganese, 0.01 to 0.12 percent aluminum, 0.04 to 0.03 percent nitrogen, 0.04 to 0.50 percent copper, 0.03 to 0.25 percent nickel, 0.02 to 0.25 percent molybdenum, 0.03 to 0.25 percent chromium, maximum 0.05 percent phosphorous, maximum 0.05 percent sulfur, and maximum 0.25 percent silicon. A method for forming the strap also is disclosed.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: February 17, 2009
    Assignee: Illinois Tool Works Inc.
    Inventors: Kenneth A. Hoffman, Dennis A. Miller, Jon E. VanHouten
  • Patent number: 7481431
    Abstract: A scratch-off lottery game card that simulates the rules of the game of Bingo. On the card, there is a first set of game indicia of a first type arranged in a grid that has at least one row of cells having a indicia of a second type with a unique one of the indicia of the second type defining a particular column of the grid. There is a second set of game indicia on the card, each a grouping of one of the first and second type of game indicia such that each defines a potential one of the first type of indicia in a column of cells of the grid of first set of game indicia. A set of prize indicators is adjacent the grid of the first set of game indicia thereby defining a row of the grid and indicating the prize for matching a defined row.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: January 27, 2009
    Assignee: Scientific Games International, Inc.
    Inventors: Dennis Miller, Jeffrey Martineck, Sr.
  • Patent number: 7482389
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Publication number: 20090019923
    Abstract: The present invention provides a procedure for determining the octanol-water distribution coefficient P of a surface-active substance by means of the following steps: 1. equilibrating a dilute aqueous solution or dispersion of the substance with octanol 2. evaporating an aliquot of the aqueous phase and re-dissolving the residue in water or electrolyte solution 3. measuring of the surface tension of the re-dissolved residue solution 4. determining the concentration of the surface-active substance in the re-dissolved residue solution by means of a surface tension vs. concentration calibration curve 5. using the concentration of the surface-active substance in the re-dissolved residue solution to calculate the equilibrium concentration in the aqueous phase and, from the mass balance, the equilibrium concentration in the octanol phase 6. calculating the octanol-water distribution coefficient from the ratio of concentrations in octanol and water phases.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 22, 2009
    Inventor: Dennis Miller
  • Patent number: 7468330
    Abstract: A method of forming a structure. The method including: forming a layer of a polymerizable composition including one or more polyhedral silsesquioxane oligomers each having one or more polymerizable groups, one or more polymerizable diluents, one or more photoacid generators and/or one or more photoinitiators; pressing a surface of a template having a relief pattern into the layer, the template, the layer filling voids in the relief pattern; polymerizing the layer to have thick and thin regions corresponding to the relief pattern; removing the template; removing the thin regions of the dielectric layer; and either curing the layer to create a porous dielectric layer followed by filling spaces between the thick regions of the porous dielectric layer with an electrically conductive material or filling spaces between the thick regions of the dielectric layer with an electrically conductive material followed by curing the dielectric layer to create a porous dielectric layer.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: December 23, 2008
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, Richard Anthony DiPietro, Geraud Jean-Michel Dubois, Mark Whitney Hart, Robert Dennis Miller, Ratnam Sooriyakumaran
  • Patent number: 7459183
    Abstract: A method of forming a structure. The method including: forming a precursor layer on a substarte, the precursor layer including a resin and, polymeric nano-particles dispersed in the resin, and a solvent, each the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the milti-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscuble with the resin; heating the precursor layer to cross-link at least about 90% of the resin thereby converting the pre-baked precursor layer to a dielectric layer; forming trenches in the dielectric layer and filling the trenches with an electrical conductor; heating the dielectric layer to thermally decompose at least acout 99.5% of the polymeric nano-particles into decomposition products and to drive the decomposition products out of the dielectric layer.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: December 2, 2008
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20080220612
    Abstract: A method of protecting a polymeric layer from contamination by a photoresist layer. The method includes: (a) forming a polymeric layer over a substrate; (b) forming a non-photoactive protection layer over the polymeric layer; (c) forming a photoresist layer over the protection layer; (d) exposing the photoresist layer to actinic radiation and developing the photoresist layer to form a patterned photoresist layer, thereby exposing regions of the protection layer; (e) etching through the protection layer and the polymeric layer where the protection layer is not protected by the patterned photoresist layer; (f) removing the patterned photoresist layer in a first removal process; and (g) removing the protection layer in a second removal process different from the first removal process.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 11, 2008
    Inventors: Ute Drechsler, Urs T. Duerig, Jane Elizabeth Frommer, Bernd W. Gotsmann, James Lupton Hedrick, Armin W. Knoll, Tobias Kraus, Robert Dennis Miller