Patents by Inventor Deqi Wang

Deqi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240278991
    Abstract: Systems for tracking consumable parts in a substrate processing system includes a mounting enclosure with a consumable parts station used for storing consumable parts within. The mounting enclosure has an opening toward an EFEM to enable a robot of the EFEM to retrieve a consumable part from the consumable parts station. An image capture system is configured to capture an image of a code on the consumable part. The image capture system includes a camera and a light source. The image capture system is positioned near the opening of the mounting enclosure, such that the camera and the light source are pointed toward the opening. A processor is communicatively connected to the image capture system and to a controller. The controller causes the robot to move the consumable part from the consumable parts station via the opening and to position the code on the consumable part within a field of view of the image capture system.
    Type: Application
    Filed: June 15, 2022
    Publication date: August 22, 2024
    Inventors: Hossein Sadeghi, Damon Tyrone Genetti, Deqi Wang, Scott Baldwin
  • Patent number: 11901227
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 13, 2024
    Assignee: Lam Research Corporation
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20240023420
    Abstract: The present application discloses a display panel and a manufacturing method thereof. In the present application, two display panels are formed on front and back surfaces of a substrate, and a double-surfaced display panel is formed combined with a pad bending process, thereby increasing a display area, maximizing use of space on the substrate, and preventing a problem of interference between control areas of the double panels.
    Type: Application
    Filed: May 18, 2021
    Publication date: January 18, 2024
    Applicants: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD., WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Deqi WANG
  • Publication number: 20230041794
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: June 28, 2022
    Publication date: February 9, 2023
    Inventors: Anand CHANDRASHEKAR, Esther JENG, Raashina Humayun, Michal DANEK, Juwen GAO, Deqi WANG
  • Patent number: 11532685
    Abstract: The present invention provides a double-sided display device and a manufacturing method thereof. The double-sided display includes an array substrate, an organic light-emitting functional layer, and a semi-transparent semi-reflective electrode arranged in sequence, and a liquid crystal cell disposed on a side of the semi-transparent semi-reflective electrode close to the organic light-emitting functional layer. One part of light emitted by the organic light-emitting functional layer penetrates through the semi-transparent semi-reflective electrode to display on one side of the double-sided display device, and the other part of the light is reflected toward the liquid crystal unit by the semi-transparent semi-reflective electrode to display on the other side of the double-sided display.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: December 20, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Deqi Wang
  • Patent number: 11410883
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 9, 2022
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 11315983
    Abstract: The present invention provides a display panel and a display device, the display panel includes a first substrate; and a second substrate disposed opposite to the first substrate; and further includes two pixel layers, respectively a first pixel layer and a second a pixel layer; the first pixel layer is disposed on a surface of one side of the first substrate; and the second pixel layer is disposed on a surface of the second substrate facing the first pixel layer. The technical effect of the present invention is to improve the pixel resolution of the display panel.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: April 26, 2022
    Inventor: Deqi Wang
  • Publication number: 20220102208
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: October 8, 2021
    Publication date: March 31, 2022
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20210408156
    Abstract: The present invention provides a display panel and a display device, the display panel includes a first substrate; and a second substrate disposed opposite to the first substrate; and further includes two pixel layers, respectively a first pixel layer and a second a pixel layer; the first pixel layer is disposed on a surface of one side of the first substrate; and the second pixel layer is disposed on a surface of the second substrate facing the first pixel layer. The technical effect of the present invention is to improve the pixel resolution of the display panel.
    Type: Application
    Filed: October 21, 2019
    Publication date: December 30, 2021
    Applicant: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Deqi WANG
  • Publication number: 20210327754
    Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20210305342
    Abstract: The present invention provides a double-sided display device and a manufacturing method thereof. The double-sided display includes an array substrate, an organic light-emitting functional layer, and a semi-transparent semi-reflective electrode arranged in sequence, and a liquid crystal cell disposed on a side of the semi-transparent semi-reflective electrode close to the organic light-emitting functional layer. One part of light emitted by the organic light-emitting functional layer penetrates through the semi-transparent semi-reflective electrode to display on one side of the double-sided display device, and the other part of the light is reflected toward the liquid crystal unit by the semi-transparent semi-reflective electrode to display on the other side of the double-sided display.
    Type: Application
    Filed: April 10, 2020
    Publication date: September 30, 2021
    Applicant: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Deqi WANG
  • Patent number: 11075115
    Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: July 27, 2021
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 10916434
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 9, 2021
    Assignee: Lam Research Corporation
    Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
  • Publication number: 20200185225
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 11, 2020
    Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
  • Publication number: 20200185273
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 10580654
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 3, 2020
    Assignee: Lam Research Corporation
    Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
  • Patent number: 10580695
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 3, 2020
    Assignee: Lam Research Corporation
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20190326168
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to ammonia vapor in a non-plasma process. Process parameters including exposure time, substrate temperature, and chamber pressure can be used to tune the inhibition profile. Also provided are methods of filling multiple adjacent lines with reduced or no line bending. The methods involve selectively inhibiting the tungsten nucleation to reduce sidewall growth during feature fill.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Tsung-Han Yang, Anand Chandrashekar, Jasmine Lin, Deqi Wang, Gang Liu, Michal Danek, Siew Neo
  • Publication number: 20190206731
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 10256142
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 9, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang