Patents by Inventor Derek R. Witty

Derek R. Witty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8337950
    Abstract: Methods for processing a substrate with a boron rich film are provided. A patterned layer of boron rich material is deposited on a substrate and can be used as an etch stop. By varying the chemical composition, the selectivity and etch rate of the boron rich material can be optimized for different etch chemistries. The boron rich materials can be deposited over a layer stack substrate in multiple layers and etched in a pattern. The exposed layer stack can then be etched with multiple etch chemistries. Each of the boron rich layers can have a different chemical composition that is optimized for the multiple etch chemistries.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 25, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Victor Nguyen, Yi Chen, Mihaela Balseanu, Isabelita Roflox, Li-Qun Xia, Derek R Witty
  • Publication number: 20120289049
    Abstract: A method for the removal of copper oxide from a copper and dielectric containing structure of a semiconductor chip is provided. The copper and dielectric containing structure may be planarized by chemical mechanical planarization (CMP) and treated by the method to remove copper oxide and CMP residues. Annealing in a hydrogen (H2) gas and ultraviolet (UV) environment removes copper oxide, and a pulsed ammonia plasma removes CMP residues.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: WEIFENG YE, Victor Nguyen, Mei-Yee Shek, Mihaela Balseanu, Li-Qun Xia, Derek R. Witty
  • Publication number: 20120276301
    Abstract: Embodiments described herein provide a method of processing a substrate. The method includes depositing an interface adhesion layer between a conductive material and a dielectric material such that the interface adhesion layer provides increased adhesion between the conductive material and the dielectric material. In one embodiment a method for processing a substrate is provided. The method comprises depositing an interface adhesion layer on a substrate comprising a conductive material, exposing the interface adhesion layer to a nitrogen containing plasma, and depositing a dielectric layer on the interface adhesion layer after exposing the interface adhesion layer to the nitrogen containing plasma.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 1, 2012
    Inventors: Yong-Won Lee, Sang M. Lee, Meiyee (Maggie Le) Shek, Weifeng Ye, Li-Qun Xia, Derek R. Witty, Thomas Nowak, Juan Carlos Rocha-Alvarez, Jigang Li
  • Patent number: 8282734
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 9, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Patent number: 8252653
    Abstract: A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20120204795
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20120208373
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: Applied Materials, Inc.
    Inventors: DEENESH PADHI, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20120196450
    Abstract: Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with some embodiments, a deposited silicon nitride film is exposed to curing with plasma and ultraviolet (UV) radiation, thereby helping remove hydrogen from the film and increasing film stress. In accordance with other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 2, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Victor Nguyen, Li-Qun Xia, Derek R. Witty, Hichem M'Saad, Mei-Yee Shek, Isabelita Roflox
  • Publication number: 20120097330
    Abstract: A substrate processing system includes a thermal processor or a plasma generator adjacent to a processing chamber. A first processing gas enters the thermal processor or plasma generator. The first processing gas then flows directly through a showerhead into the processing chamber. A second processing gas flows through a second flow path through the showerhead. The first and second processing gases are mixed below the showerhead and a layer of material is deposited on a substrate under the showerhead.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Prahallad Iyengar, Sanjeev Baluja, Dale R. DuBois, Juan Carlos Rocha-Alverez, Thomas Nowak, Scott A. Hendrickson, Yong-Won Lee, Mei-Yee Shek, Li-Qun Xia, Derek R. Witty
  • Patent number: 8148269
    Abstract: A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Christopher D. Bencher, Yongmei Chen, Li Yan Miao, Victor Nguyen, Isabelita Roflox, Li-Qun Xia, Derek R. Witty
  • Patent number: 8138104
    Abstract: Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: March 20, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Victor Nguyen, Li-Qun Xia, Derek R. Witty, Hichem M'Saad, Mei-Yee Shek, Isabelita Roflox
  • Publication number: 20110315992
    Abstract: In a method of depositing a crystalline germanium layer on a substrate, a substrate is placed in the process zone comprising a pair of process electrodes. In a deposition stage, a crystalline germanium layer is deposited on the substrate by introducing a deposition gas comprising a germanium-containing gas into the process zone, and forming a capacitively coupled plasma of the deposition gas by coupling energy to the process electrodes. In a subsequent treatment stage, the deposited crystalline germanium layer is treated by exposing the crystalline germanium layer to an energized treatment gas or by annealing the layer.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Victor T. Nguyen, Li-Qun Xia, Mihaela Balseanu, Derek R. Witty
  • Patent number: 8084105
    Abstract: Methods for forming boron-containing films are provided. The methods include introducing a boron-containing precursor and a nitrogen or oxygen-containing precursor into a chamber and forming a boron nitride or boron oxide film on a substrate in the chamber. In one aspect, the method includes depositing a boron-containing film and then exposing the boron-containing film to the nitrogen-containing or oxygen-containing precursor to incorporate nitrogen or oxygen into the film. The deposition of the boron-containing film and exposure of the film to the precursor may be performed for multiple cycles to obtain a desired thickness of the film. In another aspect, the method includes reacting the boron-containing precursor and the nitrogen-containing or oxygen-containing precursor to chemically vapor deposit the boron nitride or boron oxide film.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jeong-Uk Huh, Mihaela Balseanu, Li-Qun Xia, Victor T. Nguyen, Derek R. Witty, Hichem M'Saad
  • Patent number: 7964442
    Abstract: The present invention generally provides a method for forming a dielectric barrier with lowered dielectric constant, improved etching resistivity and good barrier property. One embodiment provides a method for processing a semiconductor substrate comprising flowing a precursor to a processing chamber, wherein the precursor comprises silicon-carbon bonds and carbon-carbon bonds, and generating a low density plasma of the precursor in the processing chamber to form a dielectric barrier film having carbon-carbon bonds on the semiconductor substrate, wherein the at least a portion of carbon-carbon bonds in the precursor is preserved in the low density plasma and incorporated in the dielectric barrier film.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: June 21, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Huiwen Xu, Yijun Liu, Li-Qun Xia, Derek R. Witty, Hichem M'Saad
  • Publication number: 20110104400
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20110090613
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Application
    Filed: November 19, 2010
    Publication date: April 21, 2011
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Y. Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Amir Al-Bayati, Derek R. Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Patent number: 7871926
    Abstract: A method for forming a structure includes forming at least one feature across a surface of a substrate. A nitrogen-containing dielectric layer is formed over the at least one feature. A first portion of the nitrogen-containing layer on at least one sidewall of the at least one feature is removed at a first rate and a second portion of the nitrogen-containing layer over the substrate adjacent to a bottom region of the at least one feature is removed at a second rate. The first rate is greater than the second rate. A dielectric layer is formed over the nitrogen-containing dielectric layer.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Mihaela Balseanu, Victor Nguyen, Derek R. Witty, Hichem M'Saad, Haichun Yang, Xinliang Lu, Chien-Teh Kao, Mei Chang
  • Patent number: 7867578
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Patent number: 7816205
    Abstract: A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Patent number: 7802538
    Abstract: A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: September 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Sohyun Park, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Li-Qun Xia, Derek R. Witty, Hichem M'Saad