Patents by Inventor Dimitri D'or

Dimitri D'or has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10439091
    Abstract: In one aspect, optoelectronic devices are described herein. In some implementations, an optoelectronic device comprises a photovoltaic cell. The photovoltaic cell comprises a space-charge region, a quasi-neutral region, and a low bandgap absorber region (LBAR) layer or an improved transport (IT) layer at least partially positioned in the quasi-neutral region of the cell.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 8, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Christopher M. Fetzer, Daniel C. Law, Xing-Quan Liu, William D. Hong, Kenneth M. Edmondson, Dimitri D. Krut, Joseph C. Boisvert, Nasser H. Karam
  • Patent number: 10379241
    Abstract: The present invention relates to a method for determining a truncation diagram for a pluri-Gaussin geological parameter estimation associated with a zone of a real subsoil. The method comprises receiving an auxiliary variable describing the zone, computing a normalized variable based on the auxiliary variable and determining a weighted probability map for the normalized variable, each point of the weighted probability map being in correspondence with a point, of the truncation diagram. Moreover for each point of the truncation diagram, the method further comprises determining an associated geological parameter based on the probability value of each point of the weighted probability map. The method is also used to adapt truncation diagram to global or local target, proportions of the facies model to built.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: August 13, 2019
    Assignee: TOTAL SA
    Inventors: Pierre Biver, Vincent Henrion, Dimitri D'Or, Denis Allard
  • Publication number: 20190197272
    Abstract: A portable data terminal including a main housing, a landscape-oriented large display screen disposed on a top front portion of the main housing and extending nearly an entire width of the main housing, a keyboard disposed on top of the main housing and rearward to the display screen, and left and right battery housings serving as ergonomic handle grips disposed on an underside of the main housing to accommodate two-handed grasping of the device, the keyboard being constructed and arranged to receive input from a pair of thumbs while corresponding hands are grasping and supporting the main housing. In an embodiment, the main housing includes a central housing portion extending downwardly on the underside of the main housing and having an extended front face for containing a scan engine/data reading mechanism and first and second cameras positioned on opposite lateral sides of the scan engine.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 27, 2019
    Inventors: Simone Paolizzi, Giovanni Minafò, Daniele Fiorini, Dimitri D'Annunzio
  • Publication number: 20190149090
    Abstract: A quantum efficiency test controller (QETC) and related techniques for measuring quantum efficiency are described. The QETC performs one or more test iterations to obtain test results regarding quantum efficiency of a multijunction photovoltaic device (MPD) having a number N of photovoltaic junctions (N>0), where the QETC is associated with N bias light sources. During a test iteration, the QETC activates a grating monochromator to emit a first test probe of monochromatic light at a first wavelength; and while the grating monochromator is emitting the first test probe, iterates through and activates each of the N bias light sources to emit a corresponding bias band of wavelengths of light. After performing the test iteration(s), the QETC generates an output that is based on the test results related to the quantum efficiency of the MPD.
    Type: Application
    Filed: November 11, 2017
    Publication date: May 16, 2019
    Inventors: Philip T. Chiu, Dimitri D. Krut
  • Publication number: 20190148572
    Abstract: A method for forming a solar cell including steps of (1) providing a semiconductor wafer having an upper surface; (2) applying an electrical contact material to the upper surface, the electrical contact material forming an electrically conductive grid that includes grid lines extending from a bus bar; (3) forming an isolation channel in the semiconductor wafer to define a solar cell portion and a wing portion, wherein the wing portion is electrically isolated from the solar cell portion, and wherein the wing portion is substantially free of the electrical contact material; (4) submerging the semiconductor wafer in a solvent, wherein formation of metal dendrites on the grid lines of the electrically conductive grid is inhibited; and (5) separating the solar cell portion from the wing portion.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Applicant: The Boeing Company
    Inventors: Xiaobo Zhang, Vincent A. Lim, Hoon H. Lee, John P. Serra, Uming T. Jeng, Steven M. Bunyan, Julie J. Hoskin, Kent E. Barbour, Dimitri D. Krut
  • Patent number: 10250182
    Abstract: A method and apparatus for focusing light onto a plurality of solar cells. The apparatus comprises a plurality of solar cells, a plurality of groups of reflectors corresponding to the plurality of solar cells, and a control module in communication with the plurality of solar cells and the plurality of groups of reflectors. The control module includes control logic for monitoring an electrical output from the plurality of solar cells and repositioning the plurality of groups of reflectors when the electrical output is below a selected threshold.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Patent number: 10236822
    Abstract: A method and apparatus for calibrating a reflector in a solar array. A switch device is switched from a first state to a second state. A calibration voltage is applied to each of a set of actuation devices associated with the reflector in response to the switch device switching to the second state when the calibration circuit is electrically connected to the set of actuation devices.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Patent number: 10224440
    Abstract: A method for forming a solar cell including steps of (1) providing a semiconductor wafer having an upper surface; (2) applying an electrical contact material to the upper surface, the electrical contact material forming an electrically conductive grid that includes grid lines extending from a bus bar; (3) forming an isolation channel in the semiconductor wafer to define a solar cell portion and a wing portion, wherein the wing portion is electrically isolated from the solar cell portion, and wherein the wing portion is substantially free of the electrical contact material; (4) submerging the semiconductor wafer in a solvent, wherein formation of metal dendrites on the grid lines of the electrically conductive grid is inhibited; and (5) separating the solar cell portion from the wing portion.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: March 5, 2019
    Assignee: The Boeing Company
    Inventors: Xiaobo Zhang, Vincent A. Lim, Hoon H. Lee, John P. Serra, Uming T. Jeng, Steven M. Bunyan, Julie J. Hoskin, Kent E. Barbour, Dimitri D. Krut
  • Patent number: 10170652
    Abstract: A semiconductor device structure having increased photogenerated current density, and increased current output is disclosed. The device includes low bandgap absorber regions that increase the range of wavelengths at which photogeneration of charge carriers takes place, and for which useful current can be collected. The low bandgap absorber regions may be strain balanced by strain-compensation regions, and the low bandgap absorber regions and strain-compensation regions may be formed from the same ternary semiconductor family. The device may be a solar cell, subcell, or other optoelectronic device with a metamorphic or lattice-mismatched base layer, for which the low bandgap absorber region improves the effective bandgap combination of subcells and current balance within the multijunction cell, for higher efficiency conversion of the solar spectrum.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 1, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Christopher M. Fetzer, Dimitri D. Krut, Nasser H. Karam
  • Publication number: 20180254823
    Abstract: A disclosed method for a virtual transponder comprises generating a configuration for a portion of a payload on a vehicle utilized by a host user by using an option for each variable(s) for a portion of the payload utilized by the host user. The method further comprises generating a configuration for a portion of the payload utilized by a hosted user by using an option for each variable(s) for a portion of the payload utilized by the hosted user. Also, the method comprises generating host commands for reconfiguring the portion of the payload utilized by the host user by using the configuration for the portion of the payload utilized by the host user. Further, the method comprises generating hosted commands for reconfiguring the portion of the payload utilized by the hosted user by using the configuration for the portion of the payload utilized by the hosted user.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 6, 2018
    Applicant: THE BOEING COMPANY
    Inventors: Kristina Miller, Robert J. Winig, Eric Anden, Dimitri D. Thomas
  • Publication number: 20180254822
    Abstract: Systems, methods, and apparatus for inband telemetry for a virtual transponder are disclosed. A disclosed method for inband telemetry for a virtual transponder comprises transmitting, by a payload antenna on a vehicle, a payload signal to a hosted receiving antenna. The method further comprises transmitting, by the payload antenna, a hosted telemetry signal to the hosted receiving antenna. In one or more embodiments, the hosted telemetry signal and the payload signal are transmitted on the same frequency band.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 6, 2018
    Applicant: THE BOEING COMPANY
    Inventors: Kristina Miller, Eric Anden, Robert J. Winig, Dimitri D. Thomas
  • Patent number: 9813022
    Abstract: A method and apparatus for managing a solar array. Light is measured using a threshold sensor to generate sensor data. A selected threshold is computed for an electrical output generated by a plurality of solar cells in the solar array based on the sensor data using control logic in a control module.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 7, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Publication number: 20170222070
    Abstract: A method for forming a solar cell including steps of (1) providing a semiconductor wafer having an upper surface; (2) applying an electrical contact material to the upper surface, the electrical contact material forming an electrically conductive grid that includes grid lines extending from a bus bar; (3) forming an isolation channel in the semiconductor wafer to define a solar cell portion and a wing portion, wherein the wing portion is electrically isolated from the solar cell portion, and wherein the wing portion is substantially free of the electrical contact material; (4) submerging the semiconductor wafer in a solvent, wherein formation of metal dendrites on the grid lines of the electrically conductive grid is inhibited; and (5) separating the solar cell portion from the wing portion.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Applicant: The Boeing Company
    Inventors: Xiaobo Zhang, Vincent A. Lim, Hoon H. Lee, John P. Serra, Uming T. Jeng, Steven M. Bunyan, Julie J. Hoskin, Kent E. Barbour, Dimitri D. Krut
  • Publication number: 20170069779
    Abstract: In one aspect, optoelectronic devices are described herein. In some implementations, an optoelectronic device comprises a photovoltaic cell. The photovoltaic cell comprises a space-charge region, a quasi-neutral region, and a low bandgap absorber region (LBAR) layer or an improved transport (IT) layer at least partially positioned in the quasi-neutral region of the cell.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Richard R. King, Christopher M. Fetzer, Daniel C. Law, Xing-Quan Liu, William D. Hong, Kenneth M. Edmondson, Dimitri D. Krut, Joseph C. Boisvert, Nasser H. Karam
  • Patent number: 9530911
    Abstract: In one aspect, optoelectronic devices are described herein. In some implementations, an optoelectronic device comprises a photovoltaic cell. The photovoltaic cell comprises a space-charge region, a quasi-neutral region, and a low bandgap absorber region (LBAR) layer or an improved transport (IT) layer at least partially positioned in the quasi-neutral region of the cell.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 27, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Christopher M. Fetzer, Daniel C. Law, Xing-Quan Liu, William D. Hong, Kenneth M. Edmondson, Dimitri D. Krut, Joseph C. Boisvert, Nasser H. Karam
  • Publication number: 20150256124
    Abstract: A method and apparatus for calibrating a reflector in a solar array. A switch device is switched from a first state to a second state. A calibration voltage is applied to each of a set of actuation devices associated with the reflector in response to the switch device switching to the second state when the calibration circuit is electrically connected to the set of actuation devices.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 10, 2015
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Publication number: 20150244316
    Abstract: A method and apparatus for managing a solar array. Light is measured using a threshold sensor to generate sensor data. A selected threshold is computed for an electrical output generated by a plurality of solar cells in the solar array based on the sensor data using control logic in a control module.
    Type: Application
    Filed: March 12, 2015
    Publication date: August 27, 2015
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Publication number: 20150244310
    Abstract: A method and apparatus for focusing light onto a plurality of solar cells. The apparatus comprises a plurality of solar cells, a plurality of groups of reflectors corresponding to the plurality of solar cells, and a control module in communication with the plurality of solar cells and the plurality of groups of reflectors. The control module includes control logic for monitoring an electrical output from the plurality of solar cells and repositioning the plurality of groups of reflectors when the electrical output is below a selected threshold.
    Type: Application
    Filed: November 4, 2014
    Publication date: August 27, 2015
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Publication number: 20150243819
    Abstract: A micro-concentrator solar array is provided, and includes a plurality of solar cells and a plurality of micro-electromechanical systems (MEMS) based reflectors. Each solar cell includes a focal point. The MEMS based reflectors are each selectively tiltable about at least one axis to reflect a beam of light onto the focal point of one of the solar cells.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: The Boeing Company
    Inventors: Nasser H. Karam, Dimitri D. Krut, Scott B. Singer
  • Patent number: D833451
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: November 13, 2018
    Assignee: DATALOGIC IP TECH S.R.L.
    Inventors: Simone Paolizzi, Giovanni Minafò, Dimitri D'Annunzio, Veikko Rihu