Patents by Inventor Dimitry Fisher

Dimitry Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10166675
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 1, 2019
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Publication number: 20180293742
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: January 15, 2018
    Publication date: October 11, 2018
    Inventors: FILIP Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 10055850
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: August 21, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 10032280
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: July 24, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 9987743
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 5, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot
  • Patent number: 9987752
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 5, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 9881349
    Abstract: Apparatus and methods for identification of a coded pattern visible to a computerized imaging apparatus while invisible or inconspicuous to human eyes. A pattern and/or marking may serve to indicate identity of an object, and/or the relative position of the pattern to a viewer. While some solutions exist for identifying patterns (for example, QR codes), they may be visually obtrusive to a human observer due to visual clutter. In exemplary implementations, apparatus and methods are capable of generating patterns with sufficient structure to be used for either discrimination or some aspect of localization, while incorporating spectral properties that are more aesthetically acceptable such as being: a) imperceptible or subtle to the human observer and/or b) aligned to an existing acceptable visual form, such as a logo. In one variant, a viewer comprises an imaging system comprised as a processor and laser scanner, or camera, or moving photodiode.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: January 30, 2018
    Assignee: GOPRO, INC.
    Inventors: Philip Meier, Dimitry Fisher, Chance Roth, Steven Hypnarowski
  • Publication number: 20180018775
    Abstract: Systems and methods for predictive/reconstructive visual object tracking are disclosed. The visual object tracking has advanced abilities to track objects in scenes, which can have a variety of applications as discussed in this disclosure. In some exemplary implementations, a visual system can comprise a plurality of associative memory units, wherein each associative memory unit has a plurality of layers. The associative memory units can be communicatively coupled to each other in a hierarchical structure, wherein data in associative memory units in higher levels of the hierarchical structure are more abstract than lower associative memory units. The associative memory units can communicate to one another supplying contextual data.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 18, 2018
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher, Patryk Laurent, Csaba Petre
  • Patent number: 9870617
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 16, 2018
    Assignee: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 9862092
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 9, 2018
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Publication number: 20170355081
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene lzhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Publication number: 20170266805
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: March 30, 2017
    Publication date: September 21, 2017
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot
  • Patent number: 9533413
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 3, 2017
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Patent number: 9426946
    Abstract: A method and an apparatus for shaping of lawns and hedges into desired 3D patterns or shapes. The apparatus consists of a bStem and/or other computational device comprising storage, a motorized platform, and trimmer end effectors. The computational device instructs the end effectors to extend or retract as the platform moves along at a steady pace, thus producing a target pattern (e.g., a company logo) in a hedge, lawn, a wall or a ground-cover of any material suitable for such shaping. The apparatus may be configured to operate autonomously based on a pre-loaded pattern file. Software (e.g., such as BrainOS) may be used to provide real-time feedback to trimmers regarding the process and the results, and possibly to train the inverse model accordingly. The apparatus may learn to minimize predicted or current mismatches between the desired pattern and the one being produced. Users compete for the best designs.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: August 30, 2016
    Assignee: BRAIN CORPORATION
    Inventor: Dimitry Fisher
  • Patent number: 9412041
    Abstract: Artificial retina may be implemented. A retinal apparatus may comprise an input pixel layer, hidden photoreceptive layer, an output neuron layer, and/or other components. Individual cones of the photoreceptive layer may be configured to receive input stimulus from one or more cones within the cone circle of confusion. The cone dynamic may be described using a diffusive state equation characterized by two variables configured to represent membrane voltage and current. Diffusive horizontal coupling of neighboring cones may effectuate non-separable spatiotemporal response that is configured to respond to contrast reversing and/or coherent moving stimulus. The photoreceptive layer high-pass filtered output may facilitate contrast detection by suppressing time-invariant component of the input and reducing sensitivity of the retina to the static inputs.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 9, 2016
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Eugene M. Izhikevich, Marius Buibas, Botond Szatmary
  • Patent number: 9364950
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 14, 2016
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Publication number: 20160151912
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 2, 2016
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Publication number: 20160150739
    Abstract: A method and an apparatus for shaping of lawns and hedges into desired 3D patterns or shapes. The apparatus consists of a bStem and/or other computational device comprising storage, a motorized platform, and trimmer end effectors. The computational device instructs the end effectors to extend or retract as the platform moves along at a steady pace, thus producing a target pattern (e.g., a company logo) in a hedge, lawn, a wall or a ground-cover of any material suitable for such shaping. The apparatus may be configured to operate autonomously based on a pre-loaded pattern file. Software (e.g., such as BrainOS) may be used to provide real-time feedback to trimmers regarding the process and the results, and possibly to train the inverse model accordingly. The apparatus may learn to minimize predicted or current mismatches between the desired pattern and the one being produced. Users compete for the best designs.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Inventor: Dimitry Fisher
  • Patent number: 9311594
    Abstract: Sensory encoder may be implemented. Visual encoder apparatus may comprise spiking neuron network configured to receive photodetector input. Excitability of neurons may be adjusted and output spike may be generated based on the input. When neurons generate spiking response, spiking threshold may be dynamically adapted to produce desired output rate. The encoder may dynamically adapt its input range to match statistics of the input and to produce output spikes at an appropriate rate and/or latency. Adaptive input range adjustment and/or spiking threshold adjustment collaborate to enable recognition of features in sensory input of varying dynamic range.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: April 12, 2016
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Eugene Izhikevich, Vadim Polonichko
  • Publication number: 20160086050
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher