Patents by Inventor Dimitry Fisher

Dimitry Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160086052
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Publication number: 20160086051
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Publication number: 20160075018
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 17, 2016
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Patent number: 9275326
    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one embodiment, the plasticity mechanism may be configured for example based on activity of one or more neurons providing feed-forward stimulus and activity of one or more neurons providing inhibitory feedback. When an inhibitory neuron generates an output, inhibitory connections may be potentiated. When an inhibitory neuron receives inhibitory input, the inhibitory connection may be depressed. When the inhibitory input arrives subsequent to the neuron response, the inhibitory connection may be depressed. When input features are unevenly distributed in occurrence, the plasticity mechanism is capable of reducing response rate of neurons that develop receptive fields to more prevalent features. Such functionality may provide network output such that rarely occurring features are not drowned out by more widespread stimulus.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 1, 2016
    Assignee: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher, Eugene Izhikevich
  • Publication number: 20150339589
    Abstract: Robotic devices may be trained using saliency maps derived from gaze of a trainer. In navigation applications, the saliency map may correspond to portions of the environment being observed by a driving instructor during training using a gaze detector. During an operation, a driver assist robot may utilize the saliency map in order to assess attention of the driver, detect potential hazards, and issue alerts. Responsive to a detection of a mismatch between the driver current attention and the target attention derived from the saliency map, the robot may issue a warning, and/or prompt the driver of an upcoming hazard. A data processing apparatus may employ gaze based saliency maps in order to analyze, e.g., surveillance camera feeds for intruders, open doors, hazards, policy violations (e.g., open doors).
    Type: Application
    Filed: May 21, 2014
    Publication date: November 26, 2015
    Applicant: BRAIN CORPORATION
    Inventor: Dimitry Fisher
  • Publication number: 20150258682
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Inventors: Eugene Izikevich, Dimitry Fisher, Jean-Baptiste Passot
  • Publication number: 20150258683
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Publication number: 20150258679
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Applicant: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Patent number: 9047568
    Abstract: Sensory encoder may be implemented. Visual encoder apparatus may comprise spiking neuron network configured to receive photodetector input. Excitability of neurons may be adjusted and output spike may be generated based on the input. When neurons generate spiking response, spiking threshold may be dynamically adapted to produce desired output rate. The encoder may dynamically adapt its input range to match statistics of the input and to produce output spikes at an appropriate rate and/or latency. Adaptive input range adjustment and/or spiking threshold adjustment collaborate to enable recognition of features in sensory input of varying dynamic range.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: June 2, 2015
    Assignee: BRAIN CORPORATION
    Inventors: Dimitry Fisher, Botond Szatmary, Eugene Izhikevich
  • Patent number: 9014416
    Abstract: Artificial retina may be implemented. A retinal apparatus may comprise an input pixel layer, hidden photoreceptive layer, an output neuron layer, and/or other components. Individual cones of the photoreceptive layer may be configured to receive input stimulus from one or more cones within the cone circle of confusion. The cone dynamic may be described using a diffusive state equation characterized by two variables configured to represent membrane voltage and current. Diffusive horizontal coupling of neighboring cones may effectuate non-separable spatiotemporal response that is configured to respond to contrast reversing and/or coherent moving stimulus. The photoreceptive layer high-pass filtered output may facilitate contrast detection by suppressing time-invariant component of the input and reducing sensitivity of the retina to the static inputs.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 21, 2015
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Eugene M. Izhikevich, Marius Buibas
  • Patent number: 8793205
    Abstract: Apparatus and methods for implementing robotic learning and evolution. An ecosystem of robots may comprise robotic devices of one or more types utilizing artificial neuron networks for implementing learning of new traits. A number of robots of one or more species may be contained in an enclosed environment. The robots may interact with objects within the environment and with one another, while being observed by the human audience. In one or more implementations, the robots may be configured to ‘reproduce’ via duplication, copy, merge, and/or modification of robotic. The replication process may employ mutations. Probability of reproduction of the individual robots may be determined based on the robot's success in whatever function trait or behavior is desired. User-driven evolution of robotic species may enable development of a wide variety of new and/or improved functionality and provide entertainment and educational value for users.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: July 29, 2014
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Eugene Izhikevich
  • Publication number: 20140156574
    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one embodiment, the plasticity mechanism may be configured for example based on activity of one or more neurons providing feed-forward stimulus and activity of one or more neurons providing inhibitory feedback. When an inhibitory neuron generates an output, inhibitory connections may be potentiated. When an inhibitory neuron receives inhibitory input, the inhibitory connection may be depressed. When the inhibitory input arrives subsequent to the neuron response, the inhibitory connection may be depressed. When input features are unevenly distributed in occurrence, the plasticity mechanism is capable of reducing response rate of neurons that develop receptive fields to more prevalent features. Such functionality may provide network output such that rarely occurring features are not drowned out by more widespread stimulus.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher, Eugene Izhikevich