Patents by Inventor Dina H. Triyoso

Dina H. Triyoso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7303983
    Abstract: A semiconductor process and apparatus fabricate a metal gate electrode by forming a first conductive layer (22) over a gate dielectric layer (11), forming a transition layer (32) over the first conductive layer using an atomic layer deposition process in which an amorphizing material is increasingly added as the transition layer is formed, forming a capping conductive layer (44) over the transition layer, and then selectively etching the capping conductive layer, transition layer, and first conductive layer, resulting in the formation of an etched gate stack (52). By forming the transition layer (32) with an atomic layer deposition process in which the amorphizing material (such as silicon, carbon, or nitrogen) is increasingly added, the transition layer (32) is constructed having a lower region (e.g., 31, 33) with a polycrystalline structure and an upper region (e.g., 37, 39) with an amorphous structure that blocks silicon diffusion.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: December 4, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dina H. Triyoso, Olubunmi O. Adetutu, James K. Schaeffer
  • Patent number: 7297586
    Abstract: A CMOS device is provided which comprises (a) a substrate (103); (b) a gate dielectric layer (107) disposed on the substrate, the gate dielectric comprising a metal oxide; (c) an NMOS electrode (105) disposed on a first region of said gate dielectric; and (d) a PMOS electrode (115) disposed on a second region of said gate dielectric, the PMOS electrode comprising a conductive metal oxide; wherein the surface of said second region of said gate dielectric comprises a material selected from the group consisting of metal oxynitrides and metal silicon-oxynitrides.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: November 20, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dina H. Triyoso, Olubunmi O. Adetutu
  • Patent number: 7230264
    Abstract: A transistor is formed using a semiconductor substrate and forming a control electrode overlying the semiconductor substrate. A first current electrode is formed within the semiconductor substrate and adjacent the control electrode. The first current electrode has a first predetermined semiconductor material. A second current electrode is formed within the semiconductor substrate and adjacent the control electrode to form a channel within the semiconductor substrate. The second current electrode has a second predetermined semiconductor material that is different from the first predetermined semiconductor material. The first predetermined semiconductor material is chosen to optimize bandgap energy of the first current electrode, and the second predetermined semiconductor material is chosen to optimize strain of the channel.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 12, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Dina H. Triyoso, Bich-Yen Nguyen
  • Patent number: 7132360
    Abstract: A method for treating a semiconductor surface to form a metal-containing layer includes providing a semiconductor substrate having an exposed surface. The exposed surface of the semiconductor substrate is treated by forming one or more metals overlying the semiconductor substrate but not completely covering the exposed surface of the semiconductor substrate. The one or more metals enhance nucleation for subsequent material growth. A metal-containing layer is formed on the exposed surface of the semiconductor substrate that has been treated. The treatment of the exposed surface of the semiconductor substrate assists the metal-containing layer to coalesce. In one embodiment, treatment of the exposed surface to enhance nucleation may be performed by spin-coating, atomic layer deposition (ALD), physical layer deposition (PVD), electroplating, or electroless plating.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: November 7, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, Darrell Roan, Dina H. Triyoso, Olubunmi O. Adetutu
  • Patent number: 7091568
    Abstract: A mixture of materials can be used within a layer of an electronic device to improve electrical and physical properties of the layer. In one set of embodiments, the layer can be a dielectric layer, such as a gate dielectric layer or a capacitor dielectric layer. The dielectric layer can include O, and two or more dissimilar metallic elements. In one specific embodiment, two dissimilar elements may have the same single oxidation state and be miscible within each other. In one embodiment, the dielectric layer can include an alloy of (HfO2)(1-x)(ZrO2)x, wherein x is between 0 and 1. Each of Hf and Zr has a single oxidation state of +4. Other combinations are possible. Improved electrical and physical properties can include better control over grain size, distribution of grain sizes, thickness of the layer across a substrate, improved carrier mobility, threshold voltage stability, or any combination thereof.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 15, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rama I. Hegde, Alexander A. Demkov, Philip J. Tobin, Dina H. Triyoso
  • Patent number: 7071038
    Abstract: A method for forming a semiconductor device (10) creates a dielectric layer (18) with high dielectric constant. An interfacial layer (14) is formed over a semiconductor substrate (12). A dielectric layer (16) is formed over the interfacial layer, wherein the dielectric layer has a high dielectric constant (K). The dielectric layer is thinned, such as by etching or chemical mechanical polishing, wherein a thickness of the thinned dielectric layer is less than a thickness of the dielectric layer prior to thinning. In one form, the method is used to form a transistor having a gate electrode layer formed over the thinned dielectric layer and source/drain diffusions (24, 26) within the semiconductor substrate.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: July 4, 2006
    Assignee: Freescale Semiconductor, Inc
    Inventors: Dina H. Triyoso, Olubunmi O. Adetutu, Randy W. Cotton
  • Patent number: 7015153
    Abstract: A method for forming at least a portion of a semiconductor device includes providing a semiconductor substrate, flowing a first precursor gas over the substrate to form a first metal-containing layer overlying the semiconductor substrate, and after completing said step of flowing the first precursor gas, flowing a first deuterium-containing purging gas over the first metal-containing layer to incorporate deuterium into the first metal-containing layer and to also purge the first precursor gas. The method may further include flowing a second precursor gas over the first metal-containing layer to react with the first metal-containing layer to form a metal compound-containing layer, and flowing a second deuterium-containing purging gas over the metal compound-containing layer to incorporate deuterium into the metal compound-containing layer and to also purge the second precursor gas.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: March 21, 2006
    Assignee: Freescale Semiconductor, inc.
    Inventors: Dina H. Triyoso, Olubunmi O. Adetutu, David C. Gilmer, Darrell Roan, James K. Schaeffer, Philip J. Tobin, Hsing H. Tseng
  • Patent number: 6987063
    Abstract: A metal-containing semiconductor layer having a high dielectric constant is formed with a method that avoids inclusion of contaminant elements that reduce dielectric constant of metals. The metal-containing semiconductor layer is formed overlying a substrate in a chamber. A precursor is introduced to deposit at least a portion of the metal-containing semiconductor layer. The precursor contains one or more elements that, if allowed to deposit in the metal-containing layer, would become impurity elements. A reactant gas is used to purify the metal-containing layer by removing impurity elements from the metal-containing layer which were introduced into the chamber by the precursor.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 17, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, James K. Schaeffer, Dina H. Triyoso
  • Patent number: 6979622
    Abstract: A transistor is formed using a semiconductor substrate and forming a control electrode overlying the semiconductor substrate. A first current electrode is formed within the semiconductor substrate and adjacent the control electrode. The first current electrode has a first predetermined semiconductor material. A second current electrode is formed within the semiconductor substrate and adjacent the control electrode to form a channel within the semiconductor substrate. The second current electrode has a second predetermined semiconductor material that is different from the first predetermined semiconductor material. The first predetermined semiconductor material is chosen to optimize bandgap energy of the first current electrode, and the second predetermined semiconductor material is chosen to optimize strain of the channel.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: December 27, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Dina H. Triyoso, Bich-Yen Nguyen
  • Patent number: 6835671
    Abstract: A extreme ultraviolet (EUV) mask blank having a reflective stack formed by depositing repeated periods of a silicon layer, a first barrier layer, a molybdenum layer, and a second barrier layer using atomic layer deposition is discussed. Precursors using silane and hydrogen are used to form the silicon layer. The first and second barrier layers are preferably different thicknesses of the same material and can be formed using precursors including diborane and methane. In one embodiment, the molybdenum layer is formed using precursors including hydrogen and molybdenum pentachloride or molybdenum pentaiodide. An EUV mask used to pattern a photoresist layer to form an integrated circuit is manufactured from the EUV mask blank.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: December 28, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Scott Daniel Hector, Bich-Yen Nguyen, Dina H. Triyoso
  • Publication number: 20040033699
    Abstract: A extreme ultraviolet (EUV) mask blank having a reflective stack formed by depositing repeated periods of a silicon layer, a first barrier layer, a molybdenum layer, and a second barrier layer using atomic layer deposition is discussed. Precursors using silane and hydrogen are used to form the silicon layer. The first and second barrier layers are preferably different thicknesses of the same material and can be formed using precursors including diborane and methane. In one embodiment, the molybdenum layer is formed using precursors including hydrogen and molybdenum pentachloride or molybdenum pentaiodide. An EUV mask used to pattern a photoresist layer to form an integrated circuit is manufactured from the EUV mask blank.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Inventors: Scott Daniel Hector, Bich-Yen Nguyen, Dina H. Triyoso