Patents by Inventor Dipankar Bhattacharya

Dipankar Bhattacharya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11476842
    Abstract: One example describes a superconducting current source system comprising a linear flux-shuttle. The linear flux-shuttle includes an input and a plurality of Josephson transmission line (JTL) stages. Each of the JTL stages includes at least one Josephson junction, an output inductor, and a clock input. The linear flux-shuttle can be configured to generate a direct current (DC) output current via the output inductor associated with each of the JTL stages in response to the at least one Josephson junction triggering in a sequence in each of the JTL stages along the linear flux-shuttle in response to receiving an input pulse at the input and in response to a clock signal provided to the clock input in each of the JTL stages.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 18, 2022
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Dipankar Bhattacharya, Donald L. Miller, Haitao O. Dai, Quentin P. Herr
  • Patent number: 11342920
    Abstract: One example includes a pulse selector system. The pulse selector system includes an input Josephson transmission line (JTL) configured to propagate an input reciprocal quantum logic (RQL) pulse received at an input based on a bias signal. The RQL pulse includes a fluxon and an antifluxon. The system also includes an escape Josephson junction coupled to an output of the input JTL. The escape Josephson junction can be configured to pass a selected one of the fluxon and the antifluxon of the RQL pulse and to trigger in response to the other of the fluxon and the antifluxon of the RQL pulse to block the other of the fluxon and the antifluxon of the RQL pulse. The system further includes an output JTL configured to propagate the selected one of the fluxon and the antifluxon as a unipolar pulse to an output based on the bias signal.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: May 24, 2022
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Dipankar Bhattacharya, Donald L. Miller, Randall M. Burnett
  • Publication number: 20210330684
    Abstract: The present invention relates to methods of treatment or prevention of fatty liver disease, nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH), cirrhosis, liver fibrosis, hepatocellular carcinoma and related liver disease and conditions by administering an effective amount of a GABAB agonist, lesogaberan (AZD3355), or related compounds.
    Type: Application
    Filed: October 11, 2019
    Publication date: October 28, 2021
    Inventors: Joel DUDLEY, Scott FRIEDMAN, Benjamin READHEAD, Christine BECKER, Dipankar BHATTACHARYA
  • Patent number: 8598941
    Abstract: A compensation circuit for controlling a variation in output impedance of at least one buffer circuit includes a monitor circuit and a control circuit coupled with the monitor circuit. The monitor circuit includes a pull-up portion including at least one PMOS transistor and a pull-down portion comprising at least one NMOS transistor. The monitor circuit is configured to track an operation of an output stage of the buffer circuit and is operative to generate at least a first control signal indicative of a status of at least one characteristic of corresponding pull-up and pull-down portions in the output stage of the buffer circuit over variations in PVT conditions to which the buffer circuit may be subjected. The control circuit is operative to generate a set of digital control bits as a function of the first control signal. The set of digital control bits is operative to compensate the pull-up and pull-down portions in the output stage of the buffer circuit over prescribed variations in PVT conditions.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: December 3, 2013
    Assignee: LSI Corporation
    Inventors: Dipankar Bhattacharya, Ashish V. Shukla, John Christopher Kriz, Makeshwar Kothandaraman, Pankaj Kumar, Pramod Parameswaran
  • Patent number: 8536925
    Abstract: A voltage translator circuit (320) includes an input stage (322) adapted for receiving an input signal referenced to a first voltage supply (VDD core), a latch (326) adapted for connection to a second voltage supply (VDD33) and operative to at least temporarily store a logic state of the input signal, and a voltage clamp (324) coupled between the input stage (322) and the latch (326). The voltage clamp (322) is operative to set a maximum voltage across the latch (326) to a first prescribed level and to set a maximum voltage across the input stage to a second prescribed level. The voltage translator circuit (320) generates a first output signal (II) at a junction between the latch (326) and the voltage clamp (324). The voltage translator circuit generates a second output signal (15) at a junction between the voltage clamp (324) and the input stage (322).
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: September 17, 2013
    Assignee: Agere Systems LLC
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John C. Kriz, Bernard L. Morris, Jeffrey J. Nagy, Peter J. Nicholas
  • Patent number: 8362803
    Abstract: A voltage translator circuit includes an input stage adapted for receiving an input signal referenced to a first voltage supply, a first latch circuit adapted for connection with a second voltage supply and operative to at least temporarily store a logic state of the input signal, and a voltage clamp coupled between the input stage and the first latch circuit. The voltage clamp is operative to set a maximum voltage across the input stage to a prescribed level. The voltage translator circuit generates a first output signal at a first output formed at a junction between the first latch circuit and the voltage clamp. A second latch circuit is connected to the first output in a feedback configuration. The second latch circuit is operative to retain a logical state of the first output signal as a function of at least a first control signal supplied to the second latch circuit regardless of a state of the first voltage supply.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 29, 2013
    Assignee: LSI Corporation
    Inventors: Peter J. Nicholas, John Christopher Kriz, Dipankar Bhattacharya, James John Bradley
  • Publication number: 20120326768
    Abstract: A compensation circuit for controlling a variation in output impedance of at least one buffer circuit includes a monitor circuit and a control circuit coupled with the monitor circuit. The monitor circuit includes a pull-up portion including at least one PMOS transistor and a pull-down portion comprising at least one NMOS transistor. The monitor circuit is configured to track an operation of an output stage of the buffer circuit and is operative to generate at least a first control signal indicative of a status of at least one characteristic of corresponding pull-up and pull-down portions in the output stage of the buffer circuit over variations in PVT conditions to which the buffer circuit may be subjected. The control circuit is operative to generate a set of digital control bits as a function of the first control signal. The set of digital control bits is operative to compensate the pull-up and pull-down portions in the output stage of the buffer circuit over prescribed variations in PVT conditions.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicant: LSI CORPORATION
    Inventors: Dipankar Bhattacharya, Ashish V. Shukla, John Christopher Kriz, Makeshwar Kothandaraman, Pankaj Kumar, Pramod Parameswaran
  • Publication number: 20120212256
    Abstract: A voltage translator circuit includes an input stage adapted for receiving an input signal referenced to a first voltage supply, a first latch circuit adapted for connection with a second voltage supply and operative to at least temporarily store a logic state of the input signal, and a voltage clamp coupled between the input stage and the first latch circuit. The voltage clamp is operative to set a maximum voltage across the input stage to a prescribed level. The voltage translator circuit generates a first output signal at a first output formed at a junction between the first latch circuit and the voltage clamp. A second latch circuit is connected to the first output in a feedback configuration. The second latch circuit is operative to retain a logical state of the first output signal as a function of at least a first control signal supplied to the second latch circuit regardless of a state of the first voltage supply.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: LSI Corporation
    Inventors: Peter J. Nicholas, John Christopher Kriz, Dipankar Bhattacharya, James John Bradley
  • Patent number: 8159262
    Abstract: A compensation circuit for controlling a variation in output impedance of at least one buffer circuit includes a monitor circuit having a pull-up portion comprising at least one PMOS transistor and a pull-down portion comprising at least one NMOS transistor. The monitor circuit is configured to track an operation of an output stage in the buffer circuit and is operative to generate a first control signal indicating a status of at least one characteristic of corresponding pull-up and pull-down portions in the output stage over variations in PVT conditions to which the buffer circuit may be subjected. The compensation circuit further includes a control circuit generating first and second sets of digital control bits for compensating the pull-up and pull-down portions in the output stage over prescribed variations in PVT conditions. The second set of digital control bits is generated based at least on the first set of digital control bits and the first control signal.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 17, 2012
    Inventors: Dipankar Bhattacharya, Ashish V. Shukla, John Christopher Kriz, Makeshwar Kothandaraman
  • Patent number: 8089739
    Abstract: An ESD protection circuit includes a first voltage clamp, connected between a first voltage supply node and a second voltage supply node of the circuit, and a second voltage clamp, connected between the second voltage supply node and a voltage return of the circuit. The first voltage supply node is adapted to receive a first voltage which is greater than a prescribed gate oxide reliability potential of the circuit. The second voltage supply node is operative to receive a second voltage which is less than the first voltage. The first voltage clamp is operative to clamp the first voltage on the first voltage supply node to a first value during an ESD event between the first and second voltage supply nodes, and the second voltage clamp is operative to clamp the second voltage on the second voltage supply node to a second value during an ESD event between the second voltage supply node and the voltage return.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 3, 2012
    Assignee: Agere Systems Inc.
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John C. Kriz, Bernard L. Morris, Yehuda Smooha
  • Publication number: 20110187431
    Abstract: A voltage translator circuit (320) includes an input stage (322) adapted for receiving an input signal referenced to a first voltage supply (VDD core), a latch (326) adapted for connection to a second voltage supply (VDD33) and operative to at least temporarily store a logic state of the input signal, and a voltage clamp (324) coupled between the input stage (322) and the latch (326). The voltage clamp (322) is operative to set a maximum voltage across the latch (326) to a first prescribed level and to set a maximum voltage across the input stage to a second prescribed level. The voltage translator circuit (320) generates a first output signal (II) at a junction between the latch (326) and the voltage clamp (324). The voltage translator circuit generates a second output signal (15) at a junction between the voltage clamp (324) and the input stage (322).
    Type: Application
    Filed: December 29, 2008
    Publication date: August 4, 2011
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman
  • Patent number: 7936209
    Abstract: Described embodiments provide for protecting from DC and transient over-voltage conditions an input/output (“I/O”) buffer having first and second I/O transistors. The first I/O transistor is coupled to a first over-voltage protection circuit adapted to prevent an over-voltage condition on at least the first I/O transistor. The second I/O transistor is coupled to a second over-voltage protection circuit adapted to prevent an over-voltage condition on at least the second I/O transistor. First and second bias voltages are generated from an operating voltage of the buffer. A third bias voltage is generated from either i) the first bias voltage, or ii) an output signal voltage of the buffer and a fourth bias voltage is generated from either i) the second bias voltage, or ii) the output signal voltage of the buffer. The third and fourth bias voltages are provided to the first and second over-voltage protection circuits, respectively.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 3, 2011
    Assignee: LSI Corporation
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John Kriz, Jeffrey Nagy, Yehuda Smooha, Pankaj Kumar
  • Patent number: 7902904
    Abstract: Disclosed is a bias circuit with a first resistor connected between the supply voltage and a feedback node. Resistors are connected in series between the feedback node and the reference supply voltage. The connections between the resistors define at least one bias voltage. A second resistor is connected between the feedback node and a first drain node. A first field-effect transistor has a first gate node, the first drain node, and a first source node. The gate node is connected to the first supply voltage. A second field-effect transistor has a second gate node, a second drain node, and a second source node. The second drain node is connected to the first source node. The second gate node is connected to the bias voltage. The second source node is connected to an output signal node. The output signal node capable of experiencing an overshoot voltage.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: March 8, 2011
    Assignee: LSI Corporation
    Inventors: Pankaj Kumar, Makeshwar Kothandaraman, Dipankar Bhattacharya, John Kriz, Jeffrey J. Nagy, Pramod Elamannu Parameswaran
  • Publication number: 20100271118
    Abstract: Described embodiments provide for protecting from DC and transient over-voltage conditions an input/output (“I/O”) buffer having first and second I/O transistors. The first I/O transistor is coupled to a first over-voltage protection circuit adapted to prevent an over-voltage condition on at least the first I/O transistor. The second I/O transistor is coupled to a second over-voltage protection circuit adapted to prevent an over-voltage condition on at least the second I/O transistor. First and second bias voltages are generated from an operating voltage of the buffer. A third bias voltage is generated from either i) the first bias voltage, or ii) an output signal voltage of the buffer and a fourth bias voltage is generated from either i) the second bias voltage, or ii) the output signal voltage of the buffer. The third and fourth bias voltages are provided to the first and second over-voltage protection circuits, respectively.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John Kriz, Jeffrey Nagy, Yehuda Smooha, Pankaj Kumar
  • Publication number: 20100232078
    Abstract: An ESD protection circuit includes a first voltage clamp, connected between a first voltage supply node and a second voltage supply node of the circuit, and a second voltage clamp, connected between the second voltage supply node and a voltage return of the circuit. The first voltage supply node is adapted to receive a first voltage which is greater than a prescribed gate oxide reliability potential of the circuit. The second voltage supply node is operative to receive a second voltage which is less than the first voltage. The first voltage clamp is operative to clamp the first voltage on the first voltage supply node to a first value during an ESD event between the first and second voltage supply nodes, and the second voltage clamp is operative to clamp the second voltage on the second voltage supply node to a second value during an ESD event between the second voltage supply node and the voltage return.
    Type: Application
    Filed: October 30, 2007
    Publication date: September 16, 2010
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John C. Kriz, Bernard L. Morris, Yehuda Smooha
  • Publication number: 20100141334
    Abstract: Disclosed is a bias circuit with a first resistor connected between the supply voltage and a feedback node. Resistors are connected in series between the feedback node and the reference supply voltage. The connections between the resistors define at least one bias voltage. A second resistor is connected between the feedback node and a first drain node. A first field-effect transistor has a first gate node, the first drain node, and a first source node. The gate node is connected to the first supply voltage. A second field-effect transistor has a second gate node, a second drain node, and a second source node. The second drain node is connected to the first source node. The second gate node is connected to the bias voltage. The second source node is connected to an output signal node. The output signal node capable of experiencing an overshoot voltage.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Pankaj Kumar, Makeshwar Kothandaraman, Dipankar Bhattacharya, John Kriz, Jeffrey J. Nagy, Pramod Elamannu Parameswaran
  • Patent number: 7720107
    Abstract: A source-synchronous parallel interface divides a wide data bus into clock-groups including a sub-group of the data lines and a clock line carrying a copy of the transmit clock. The traces in a clock-group are located physically close together to minimize skew between the signals carried on the traces of the clock-group. Deskew logic on the receiver compensates for skew between received clock-group signals.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: May 18, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Dipankar Bhattacharya, Bangalore Priyadarshan, Jaushin Lee, François Gautier-Le Boulch
  • Patent number: 7642807
    Abstract: A compensated buffer circuit operative in one of at least a first mode and a second mode includes a plurality of output blocks and a plurality of predrivers, each of the predrivers having an output connected to an input of a corresponding one of the output blocks. Respective outputs of the output blocks are connected together and form an output of the buffer circuit. The output blocks are arranged in a sequence and are binary weighted such that a drive strength of a given one of the output blocks is about twice as large as a drive strength of an output block immediately preceding the given output block. Each of the predrivers selectively enables the corresponding output block connected thereto as a function of a control signal supplied to the predriver for compensating the buffer circuit for PVT variations to which the buffer circuit may be subjected.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: January 5, 2010
    Assignee: Agere Systems Inc.
    Inventors: Dipankar Bhattacharya, Gregg R. Harleman, Makeshwar Kothandaraman, John C. Kriz, Bernard L. Morris
  • Patent number: 7551020
    Abstract: A compensation circuit for compensating an output impedance of at least a first MOS device over PVT variations to which the first MOS device may be subjected includes a first current source generating a first current having a value which is substantially constant and a second current source generating a second current having a value which is programmable as a function of at least one control signal presented to the second current source. A comparator is connected to respective outputs of the first and second current sources and is operative to measure a difference between the respective values of the first and second currents and to generate an output signal indicative of relative magnitudes of the first current and the second current. A processor connected in a feedback arrangement between the comparator and the second current source receives the output signal generated by the comparator and generates the control signal for controlling the second current as a function of the output signal.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 23, 2009
    Assignee: Agere Systems Inc.
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John C. Kriz, Antonio M. Marques, Bernard L. Morris
  • Patent number: 7529070
    Abstract: An ESD clamp circuit for use between separate power rails. An ESD clamp is based on a wide nMOSFET. A symmetrical circuit is designed vis-à-vis the two power rails, with respect to ground, allowing discharge of an ESD surge in both polarities of stress. An nMOSFET device drives the gate of a large nMOSFET (e.g., having a device width between 1000 and 10,000 microns). The large power rail-to-power rail nMOSFET has its gate controlled by the output inverter stage of either ESD detection circuit connected to a respective power supply rail. The gate is switched to a common ground during normal operation of the integrated circuit.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 5, 2009
    Assignee: Agere Systems Inc.
    Inventors: Dipankar Bhattacharya, John Kriz, Che Coi Leung, Duane J. Loeper, Yehuda Smooha