Patents by Inventor Dirk Heinrich

Dirk Heinrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180246413
    Abstract: An optical assembly includes an optical element (13), configured in particular for the reflection of EUV radiation (4), and a protective element (30) for protecting a surface (31) of the optical element (13, 14) from contaminating substances (P). The protective element (30) has a membrane (33a-c) and a frame (34) on which the membrane (33a-c) is mounted. The membrane is formed by a plurality of membrane segments (33a, 33b, 33c) which respectively protect a partial region (T) of the surface (31) of the optical element (13) from the contaminating substances (P). The optical assembly can form part of an overall optical arrangement, for example an EUV lithography system.
    Type: Application
    Filed: April 28, 2018
    Publication date: August 30, 2018
    Inventors: Dirk Heinrich EHM, Stefan-Wolfgang SCHMIDT
  • Patent number: 10061205
    Abstract: A reflective optical element, in particular for a microlithographic projection exposure apparatus has a substrate (101), a reflection layer system (110) and a defect structure (120) of channel-shaped defects (121) which extend inward from the optical effective surface (100a), or from an interface oriented toward the substrate as far as the reflection layer system, and permit egress of hydrogen from the reflection layer system. The channel-shaped defects (121) increase a diffusion coefficient that is characteristic for the egress of the hydrogen from the reflection layer system (110) by at least 20%, in comparison to a similar layer construction without these channel-shaped defects.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: August 28, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Heinrich Ehm, Moritz Becker, Irene Ament, Gisela Von Blanckenhagen, Joern Weber
  • Patent number: 9996005
    Abstract: In order to reduce the negative influence of reactive hydrogen on the lifetime of a reflective optical element, particularly inside an EUV lithography device, there is proposed for the extreme ultraviolet and soft X-ray wavelength region a reflective optical element (50) having a reflective surface (60) with a multilayer system (51) and in the case of which the reflective surface (60) has a protective layer system (59) with an uppermost layer (56) composed of silicon carbide or ruthenium, the protective layer system (59) having a thickness of between 5 nm and 25 nm.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: June 12, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Heinrich Ehm, Peter Huber, Stephan Muellender, Gisela Von Blanckenhagen
  • Patent number: 9880476
    Abstract: A method for producing a capping layer (18) composed of silicon oxide SiOx on a coating (16) of a mirror (13), the coating reflecting EUV radiation (6) e.g. for use in an EUV lithography apparatus or in an EUV mask metrology system. The method includes irradiating a capping layer (18) composed of silicon nitride SiNx or composed of silicon oxynitride SiNxOy for converting the silicon nitride SiNx or the silicon oxynitride SiNxOy of the capping layer (18) into silicon oxide SiOx. An associated mirror (13) includes a capping layer comprised of silicon oxide SiOX, and can be provided in an associated EUV lithography apparatus.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: January 30, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Heinrich Ehm, Gisela von Blanckenhagen
  • Publication number: 20170212433
    Abstract: An EUV lithography system (1) includes: at least one optical element (13, 14) having an optical surface (13a, 14a) arranged in a vacuum environment (17) of the EUV lithography system (1), and a feed device (27) for feeding hydrogen into the vacuum environment (17), in which at least one silicon-containing surface (29a) is arranged. The feed device (27) additionally feeds an oxygen-containing gas into the vacuum environment (17) and has a metering device (28) that sets an oxygen partial pressure (pO2) at the at least one silicon-containing surface (29a) and/or at the optical surface (13a, 14a).
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Dirk Heinrich EHM, Stefan-Wolfgang SCHMIDT, Edgar OSORIO, Edwin TE SLIGTE, Mark ZELLENRATH, Hella LOGTENBERG
  • Publication number: 20170160639
    Abstract: A reflective optical element, in particular for a microlithographic projection exposure apparatus has a substrate (101), a reflection layer system (110) and a defect structure (120) of channel-shaped defects (121) which extend inward from the optical effective surface (100a), or from an interface oriented toward the substrate as far as the reflection layer system, and permit egress of hydrogen from the reflection layer system. The channel-shaped defects (121) increase a diffusion coefficient that is characteristic for the egress of the hydrogen from the reflection layer system (110) by at least 20%, in comparison to a similar layer construction without these channel-shaped defects.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Dirk Heinrich EHM, Moritz BECKER, Irene AMENT, Gisela VON BLANCKENHAGEN, Joern WEBER
  • Patent number: 9632436
    Abstract: An optical assembly including: a beam generating system generating radiation (6) at an operating wavelength, an optical element (13, 14) arranged in a residual gas atmosphere (16) and subjected to the radiation, which induces a degradation of a surface of the optical element, and a feed device feeding at least one gaseous constituent into the residual gas atmosphere, to suppress the degradation of the surface. Either a beam diameter (d) of the radiation at the surface of the optical element, lies above a threshold value (dc), thereby suppressing the degradation by the gaseous constituent, or, if the beam diameter (d) at the surface (14a) of the optical element (14) lies below the threshold value (dc) so that the effectiveness of the suppression of the degradation is reduced, at least one further device (25, 27) enhancing suppression of the degradation of the surface (14a) is assigned to the optical element (14).
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: April 25, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan-Wolfgang Schmidt, Dirk Heinrich Ehm, Markus Walter
  • Publication number: 20160299268
    Abstract: A minor reflecting radiation with an operating wavelength of 5-30 nm, includes a substrate and a reflective coating. The reflective coating includes a first group of layers (19) and a second group (5) of layers, such that the second group of layers is arranged between the substrate and the first group of layers. The first group and the second group of layers comprise a plurality of first and second layers (9, 11). The first layers have a refractive index for radiation having the operating wavelength which is greater than a refractive index of the second layers for radiation having the operating wavelength. A correction layer (13) has a layer thickness variation for correcting the surface form of the minor and is arranged between the second group and the first group of layers. The correction layer contains carbon, sulfur, phosphorus, fluorine or organic compounds thereof, and inorganic metal compounds.
    Type: Application
    Filed: April 21, 2016
    Publication date: October 13, 2016
    Inventors: Juergen MUELLER, Thomas SCHICKETANZ, Dirk Heinrich EHM
  • Publication number: 20160187543
    Abstract: An optical element (50), comprising: a substrate (52), an EUV radiation reflecting multilayer system (51) applied to the substrate, and a protective layer system (60) applied to the multilayer system and having at least a first and a second layer (57, 58). The first layer (57) is arranged closer to the multilayer system (51) than is the second layer (58) and serves as a diffusion barrier for hydrogen. This first layer (57) has a lower solubility for hydrogen than does the second layer (58), which serves for absorbing hydrogen. Also disclosed are an optical system for EUV lithography with at least one such optical element, and a method for treating an optical element in order to remove hydrogen incorporated in at least one layer (57, 58, 59) of the protective layer system and/or in at least one layer (53, 54) of the multilayer system (51).
    Type: Application
    Filed: September 15, 2015
    Publication date: June 30, 2016
    Inventors: Hermanus Hendricus Petrus Theodorus BEKMAN, Dirk Heinrich EHM, Jeroen HUIJBREGTSE, Arnoldus Jan STORM, Tina GRABER, Irene AMENT, Dries SMEETS, Edwin TE SLIGTE, Alexey KUZNETSOV
  • Patent number: 9354529
    Abstract: An arrangement for use in a projection exposure tool (100) for microlithography comprises a reflective optical element (10; 110) and a radiation detector (30; 32; 130). The reflective optical element (10; 110) comprises a carrier element (12) guaranteeing the mechanical strength of the optical element (10; 110) and a reflective coating (18) disposed on the carrier element (12) for reflecting a use radiation (20a). The carrier element (12) is made of a material which upon interaction with the use radiation (20a) emits a secondary radiation (24) the wavelength of which differs from the wavelength of the use radiation (20a), and the radiation detector (30; 32; 130) is configured to detect the secondary radiation (24).
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 31, 2016
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands B.V.
    Inventors: Dirk Heinrich Ehm, Maarten van Kampen, Stefan-Wolfgang Schmidt, Vadim Yevgenyevich Banine, Erik Loopstra
  • Patent number: 9341756
    Abstract: A method for correcting a surface form of a mirror (1) for reflecting radiation in the wavelength range of 5-30 nm, which includes: applying a correction layer (13) having a layer thickness variation (21) for correcting the mirror's surface form, and applying a first group (19) of layers to the correction layer. The first group (19) of layers includes first (9) and second (11) layers arranged alternately one above another, wherein the first layers have a refractive index at the operating wavelength which is greater than the refractive index of the second layers for that radiation. The correction layer (13) is applied by: introducing the mirror into an atmosphere including a reaction gas (15), applying a correction radiation (17) having a location-dependent radiation energy density, such that a correction layer having a location-dependent layer thickness variation (21) grows on the mirror's irradiated surface.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: May 17, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Juergen Mueller, Thomas Schicketanz, Dirk Heinrich Ehm
  • Patent number: 9298109
    Abstract: An EUV lithography apparatus (1) includes: a light source (15) for generating radiation (17) for the illumination of particles (P) present in the gas phase and present in the EUV lithography apparatus (1) along a light area (18), and a detector, for detecting radiation (17a) from the light source (15) that is scattered at the illuminated particles (P) in a test region (19) captured by the detector. Also, a method for detecting particles (P) in an EUV lithography apparatus (1) includes: producing a light area (18) for illuminating the particles (P) present in the gas phase, detecting radiation (17a) scattered at the illuminated particles (P) in a test region (19), and determining a number (N) of particles in the test region (19) on the basis of the detected radiation (17a).
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 29, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vera Butscher, Dirk Heinrich Ehm
  • Patent number: 9249501
    Abstract: A mirror (1) for a microlithography projection exposure apparatus including a substrate (3) and a reflective coating (5). A functional coating (11) between the substrate (3) and the reflective coating (5) has a local form variation (19) for correcting the surface form of the mirror (1), wherein the local form variation (19) is brought about by a local variation in the chemical composition of the functional coating (11) and wherein a thickness of the reflective coating (5) is not changed by the local variation in the chemical composition of the functional coating (11). The local variation in the chemical composition of the functional coating (11) can be brought about by bombardment with particles (15), for example with hydrogen ions.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 2, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Heinrich Ehm, Franz-Josef Stickel, Juergen Mueller
  • Patent number: 9229331
    Abstract: A mirror (13) for use e.g. in an EUV lithography apparatus or an EUV mask metrology system, with: a substrate (15) and a coating (16) reflective to EUV radiation (6), the reflective coating having a capping layer (18) composed of an oxynitride, in particular composed of SiNxOY, wherein a nitrogen proportion x in the oxynitride NxOY is between 0.4 and 1.4. Also provided are an EUV lithography apparatus having at least one such EUV mirror (13) and a method for operating such an EUV lithography apparatus.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: January 5, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Gisela von Blanckenhagen, Dirk Heinrich Ehm
  • Patent number: 9046794
    Abstract: In order to clean optical components (35) inside an EUV lithography device in a gentle manner, a cleaning module for an EUV lithography device includes a supply line for molecular hydrogen and a heating filament for producing atomic hydrogen and hydrogen ions for cleaning purposes. The cleaning module also has an element, (33) arranged to apply an electric and/or magnetic field, downstream of the heating filament (29) in the direction of flow of the hydrogen (31, 32). The element can be designed as a deflection unit, as a filter unit and/or as an acceleration unit for the ion beam (32).
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: June 2, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Hembacher, Dieter Kraus, Dirk Heinrich Ehm, Stefan-Wolfgang Schmidt, Stefan Koehler, Almut Czap, Stefan Wiesner, Hin Yiu Anthony Chung
  • Patent number: 9041905
    Abstract: An optical arrangement, in particular in a projection exposure apparatus for EUV lithography. In an aspect an optical arrangement has a housing (100, 200, 550, 780) in which at least one optical element is arranged, and at least one subhousing (140, 240, 560, 790, 811, 823, 824, 831, 841) which is arranged within the housing and which surrounds at least one beam incident on the optical element in operation of the optical system, wherein the internal space of the subhousing is in communication with the external space of the subhousing by way of at least one opening, wherein provided in the region of the opening is at least one flow guide portion which deflects a flushing gas flow passing through the opening from the internal space to the external space of the subhousing, at least once in its direction.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: May 26, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Heinrich Ehm, Stefan-Wolfgang Schmidt, Guenther Dengel
  • Publication number: 20150111971
    Abstract: The present invention relates to a topical pharmaceutical composition comprising, based on the total weight of the composition: a) from 1.5 wt. % to 5 wt. % of terbinafine or any pharmaceutically acceptable salt thereof; b) from 15 wt. % to 35 wt. % of urea; and c) more than 25 wt. % of water.
    Type: Application
    Filed: May 13, 2013
    Publication date: April 23, 2015
    Inventors: Dirk-Heinrich Evers, Sabine Fielhauer, Sascha Gorissen, Michael Herbig, Henning Mallwitz, Christoph Willers
  • Patent number: 8980009
    Abstract: The invention is directed to a method for at least partially removing a contamination layer (15) from an optical surface (14a) of an EUV-reflective optical element (14) by bringing a cleaning gas into contact with the contamination layer. In the method, a jet (20) of cleaning gas is directed to the contamination layer (15) for removing material from the contamination layer (15). The contamination layer (15) is monitored for generating a signal indicative of the thickness of the contamination layer (15) and the jet (20) of cleaning gas is controlled by moving the jet (20) of cleaning gas relative to the optical surface (14a) using this signal as a feedback signal. A cleaning arrangement (19 to 24) for carrying out the method is also disclosed. The invention also relates to a method for generating a jet (20) of cleaning gas and to a corresponding cleaning gas generation arrangement.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 17, 2015
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands B.V.
    Inventors: Dirk Heinrich Ehm, Arnold Storm, Johannes Hubertus Josephina Moors, Bastiaan Theodoor Wolschrijn, Thomas Stein, Edwin te Sligte
  • Patent number: 8953145
    Abstract: An EUV (extreme ultraviolet) lithography apparatus (1) including: a housing (1a) enclosing an interior (15), at least one reflective optical element (5, 6, 8, 9, 10, 14.1 to 14.6) arranged in the interior (15), a vacuum generating unit (1b) generating a residual gas atmosphere in the interior (15), and a residual gas analyzer (18a, 18b) detecting at least one contaminating substance (17a) in the residual gas atmosphere. The residual gas analyzer (18a) has a storage device (21) having an ion trap for storing the contaminating substance (17a). Additionally, a method for detecting at least one contaminating substance by residual gas analysis of a residual gas atmosphere of an EUV lithography apparatus (1) having a housing (1a) having an interior (15), in which at least one reflective optical element (5, 6, 8, 9, 10, 14.1 to 14.6), is arranged, wherein the contaminating substance (17a) is stored in a storage device (21) in order to carry out the residual gas analysis.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 10, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dieter Kraus, Dirk Heinrich Ehm, Stefan-Wolfgang Schmidt
  • Patent number: 8928855
    Abstract: A lithographic apparatus includes a projection system constructed and arranged to project a beam of radiation onto a target portion of a substrate, an internal sensor having a sensing surface, and a mini-reactor movable with respect to the sensor. The mini-reactor includes an inlet for a hydrogen containing gas, a hydrogen radical generator, and an outlet for a hydrogen radical containing gas. The mini-reactor is constructed and arranged to create a local mini-environment comprising hydrogen radicals to treat the sensing surface.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 6, 2015
    Assignees: ASML Netherlands B.V., Carl Zeiss SMT GmbH
    Inventors: Johannes Hubertus Josephina Moors, Bastiaan Theodoor Wolschrijn, Dirk Heinrich Ehm