Patents by Inventor Dirk Manger

Dirk Manger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7109544
    Abstract: In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: September 19, 2006
    Assignee: Infineon Technologies AG
    Inventors: Till Schloesser, Dirk Manger, Bernd Goebel
  • Patent number: 7074660
    Abstract: A transistor fin of a fin field-effect transistor is arranged between two contact structures. A gate electrode encapsulating the transistor fin on three sides is caused to recede by means of a nonlithographic process from contact trenches, which define the contact structures, before the formation of the contact structures. A distance a between the gate electrode and the contact structures is not subject to any tolerances due to the overlay of two independent lithographic masks. For a given extent of the gate electrode along the transistor fin, it is possible to minimize a distance A between the contact structures and thereby significantly increase the packing density of a plurality of fin field-effect transistors on a substrate compared with conventional devices.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 11, 2006
    Assignee: Infineon Technologies AG
    Inventor: Dirk Manger
  • Publication number: 20060079049
    Abstract: In a method for fabricating a capacitor that includes an electrode structure (80), an auxiliary layer (40) is formed over a substrate (10). A recess (60), which determines the shape of the electrode structure (80), is etched into the auxiliary layer (40), and the electrode structure of the capacitor is formed in the recess. As an example, the auxiliary layer can be a semiconductor layer (40).
    Type: Application
    Filed: September 9, 2005
    Publication date: April 13, 2006
    Inventors: Srivatsa Kundalgurki, Peter Moll, Dirk Manger, Kristin Schupke, Till Schloesser
  • Patent number: 7005346
    Abstract: A memory cell has a vertical construction of a capacitor and a vertical FET arranged above the latter which can be produced with a lower outlay and in a technologically more reliable fashion. This is achieved by virtue of the fact that two first trenches running parallel and having a first depth are etched in the semiconductor substrate. Between the trenches is formed a web, which is connected to the semiconductor substrate at its narrow sides and which is severed at its underside and is separated from the semiconductor substrate. The suspended web is then provided with a closed dielectric. After a filling, the FET is applied and connected to the web as memory node.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: February 28, 2006
    Assignee: Infineon Technologies AG
    Inventor: Dirk Manger
  • Patent number: 7005240
    Abstract: A hard mask is produced from spacer structures. The spacer structures are formed from a conformal deposition on elevated structures produced lithographically in a projection process. The conformal deposition is etched back laterally on the elevated structures resulting in the spacer structures. The elevated structures between the spacer structures are subsequently etched away, so that the spacer structures remain in an isolated fashion as sublithographic structures of a hard mask with a doubled structure density compared with that originally produced in lithographic projection. In a regularly disposed two-dimensional array of structures in the hard mask for forming trenches—for instance for trench capacitors—the method achieves a doubling of the structure density in the array. A further iteration step is formed by forming further spacer structures on the first and second spacer structures, thereby achieving an even higher increase in structure density in the hard mask.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 28, 2006
    Assignee: Infineon Technologies AG
    Inventors: Dirk Manger, Matthias Goldbach
  • Patent number: 6956260
    Abstract: In semiconductor memories, in particular DRAMs, the memory cells of which have vertical transistors at vertical lands formed from substrate material, gate electrodes are formed as spacers which run around the land. The gate electrodes of adjacent memory cells conventionally have to be retroactively connected to form word lines. It is known to fill spaces between adjacent lands with an oxide, with the result that the spacers are formed directly as word lines but only cover two side walls of a land. Two transistors which are connected in parallel are formed at these side walls instead of a single transistor, since the gate electrode does not run around the land. The invention proposes a method for fabricating a semiconductor memory in which all four side walls of a land are covered by the word lines and at the same time lands of adjacent memory cells are connected to one another by the word lines.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: October 18, 2005
    Assignee: Infineon Technologies AG
    Inventors: Dirk Manger, Till Schlösser, Martin Popp, Michael Sesterhenn
  • Patent number: 6932916
    Abstract: A method for etching trenches having different depths on a semiconductor substrate includes providing a mask with first and second openings. The first and second openings are located where corresponding first and second trenches are to be etched. A slow-etch region, made of a slow-etch material, is provided above the substrate at a location corresponding to the second opening. When exposed to a selected etchant, the slow-etch material is etched at a rate less than the rate at which the semiconductor substrate is etched when exposed to the selected etchant.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: August 23, 2005
    Assignee: Infineon Technologies AG
    Inventors: Dirk Manger, Hans-Peter Moll, Till Schloesser
  • Patent number: 6919255
    Abstract: A method for fabricating a semiconductor trench structure includes forming a trench in a semiconductor substrate and filling it with a filler. A first thermal process having a first maximum temperature cures the filler. Removing the filler from an upper region of the trench as far as a boundary surface defines a collar region. In a second thermal process having a second maximum temperature that is not significantly higher than the first maximum temperature, a liner is deposited on the collar region and the boundary surface. The liner is removed from the boundary surface, thereby exposing the filler. The filler is then removed from a lower region of the trench.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: July 19, 2005
    Assignee: Infineon Technologies AG
    Inventors: Albert Birner, Matthias Goldbach, Thomas Hecht, Lars Heineck, Stephan Kudelka, Jörn Lützen, Dirk Manger, Andreas Orth
  • Patent number: 6900130
    Abstract: A method is proposed for locally heating a region that is disposed in a substrate. A substrate is provided and at least one region is produced in the substrate with a lower specific resistance than the surrounding substrate. The region is then locally heated by inducing eddy currents by irradiation with electromagnetic energy.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: May 31, 2005
    Assignee: Infineon Technologies AG
    Inventor: Dirk Manger
  • Publication number: 20050088895
    Abstract: Memory cells having a cell capacitor and a cell transistor, which are arranged in a vertical cell structure, are provided in the cell array of a DRAM. By means of a deep implantation or a shallow implantation with subsequent epitaxial growth of silicon, a buried source/drain layer is formed, from which lower source/drain regions of the cell transistors emerge. The upper edge of the buried source/drain layer can be aligned with respect to a lower edge of a gate electrode of the cell transistor, which consequently results in a reduction of a gate/drain capacitance and also a leakage current between the gate electrode and the lower source/drain region. A gate conductor layer structure is applied and there are formed, from the gate conductor layer structure, in a controlled transistor array, gate electrode structures of control transistors and, in the cell array, a body connection structure for the connection of body regions of the cell transistors.
    Type: Application
    Filed: July 23, 2004
    Publication date: April 28, 2005
    Inventors: Dirk Manger, Till Schloesser, Rolf Weis, Bernd Goebel, Wolfgang Mueller, Joachim Nuetzel, Klaus Muemmler
  • Publication number: 20050083724
    Abstract: Memory cells each having a cell capacitor and a cell transistor, which are arranged in a vertical cell structure, are provided in the cell array of a DRAM. By means of a deep implantation or a shallow implantation and subsequent epitaxial growth of silicon, a buried source/drain layer is formed, from which lower source/drain regions of the cell transistors emerge. The upper edge of the buried source/drain layer can be aligned with respect to a lower edge of a gate electrode of the cell transistor and this results in a reduction of a gate/drain capacitance and also a leakage current between the gate electrode and the lower source/drain region. A body connection plate for the connection of the channel regions is applied to the substrate surface and contact holes are introduced into the body connection plate. Upper source/drain regions of the cell transistors are formed by implantation through the contact holes.
    Type: Application
    Filed: July 23, 2004
    Publication date: April 21, 2005
    Inventors: Dirk Manger, Till Schloesser, Rolf Weis, Bernd Goebel, Wolfgang Mueller
  • Patent number: 6861688
    Abstract: A bit line configuration for contact-connecting at least one memory cell, in particular a DRAM memory cell, has bit lines disposed above the plane of the memory cell. A first bit line in a first bit line level is disposed below a second bit line in a second bit line level and the second bit line penetrates through the first bit line at at least one location of the first bit line for the purpose of producing a contact with the at least one memory cell at penetration locations. It is thus possible to provide space-saving structures, in particular sub-8F2 structures.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: March 1, 2005
    Assignee: Infineon Technologies AG
    Inventors: Dirk Manger, Till Schlösser
  • Publication number: 20050032309
    Abstract: A memory cell has a vertical construction of a capacitor and a vertical FET arranged above the latter which can be produced with a lower outlay and in a technologically more reliable fashion. This is achieved by virtue of the fact that two first trenches running parallel and having a first depth are etched in the semiconductor substrate. Between the trenches is formed a web, which is connected to the semiconductor substrate at its narrow sides and which is severed at its underside and is separated from the semiconductor substrate. The suspended web is then provided with a closed dielectric. After a filling, the FET is applied and connected to the web as memory node.
    Type: Application
    Filed: May 21, 2004
    Publication date: February 10, 2005
    Inventor: Dirk Manger
  • Publication number: 20050014318
    Abstract: A transistor fin of a fin field-effect transistor is arranged between two contact structures. A gate electrode encapsulating the transistor fin on three sides is caused to recede by means of a nonlithographic process from contact trenches, which define the contact structures, before the formation of the contact structures. A distance a between the gate electrode and the contact structures is not subject to any tolerances due to the overlay of two independent lithographic masks. For a given extent of the gate electrode along the transistor fin, it is possible to minimize a distance A between the contact structures and thereby significantly increase the packing density of a plurality of fin field-effect transistors on a substrate compared with conventional devices.
    Type: Application
    Filed: January 29, 2004
    Publication date: January 20, 2005
    Inventor: Dirk Manger
  • Publication number: 20050001257
    Abstract: In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another.
    Type: Application
    Filed: February 13, 2004
    Publication date: January 6, 2005
    Inventors: Till Schloesser, Dirk Manger, Bernd Goebel
  • Publication number: 20040266088
    Abstract: A DRAM memory cell is provided with a selection transistor, which is arranged horizontally at a semiconductor substrate surface and has a first source/drain electrode, a second source/drain electrode, a channel layer arranged between the first and the second source/drain electrode in the semiconductor substrate, and a gate electrode, which is arranged along the channel layer and is electrically insulated from the channel layer, a storage capacitor, which has a first capacitor electrode and a second capacitor electrode, insulated from the first capacitor electrode, one of the capacitor electrodes of the storage capacitor being electrically conductively connected to one of the source/drain electrodes of the selection transistor, and a semiconductor substrate electrode on the rear side, the gate electrode enclosing the channel layer at at least two opposite sides.
    Type: Application
    Filed: May 6, 2004
    Publication date: December 30, 2004
    Applicant: Infineon Technologies AG
    Inventors: Richard J. Luyken, Franz Hofmann, Lothar Risch, Dirk Manger, Wolfgang Rosner, Till Schlosser, Michael Specht
  • Publication number: 20040245558
    Abstract: The invention relates to a trench capacitor, in particular for use in a semiconductor memory cell, comprising a trench (2), embodied in a substrate (1), a first region (1a), provided in the substrate (1), as first capacitor electrode, a dielectric layer (10) on the trench wall as capacitor dielectric and a metallic filler material (30″) provided in the trench (2) as second electrode. Above the conducting metallic filling material (30″) a dielectric filling material (35) is provided in the trench (2) with a cavity (40) provided for mechanical tensions. The invention further relates to a corresponding method of production.
    Type: Application
    Filed: July 12, 2004
    Publication date: December 9, 2004
    Inventor: Dirk Manger
  • Publication number: 20040126961
    Abstract: A method for fabricating a semiconductor trench structure includes forming a trench in a semiconductor substrate and filling it with a filler. A first thermal process having a first maximum temperature cures the filler. Removing the filler from an upper region of the trench as far as a boundary surface defines a collar region. In a second thermal process having a second maximum temperature that is not significantly higher than the first maximum temperature, a liner is deposited on the collar region and the boundary surface. The liner is removed from the boundary surface, thereby exposing the filler. The filler is then removed from a lower region of the trench.
    Type: Application
    Filed: July 30, 2003
    Publication date: July 1, 2004
    Inventors: Albert Birner, Matthias Goldbach, Thomas Hecht, Lars Heineck, Stephan Kudelka, Jorn Lutzen, Dirk Manger, Andreas Orth
  • Patent number: 6750098
    Abstract: In semiconductor memories having a surrounding gate configuration, webs, i.e. vertical rectangular pillars made of substrate material, are formed at the surface of a semiconductor substrate and are surrounded by the gate electrodes in a lower region. Conventionally, it is not possible for word lines to make contact with the gate electrodes in the lower region of the webs without at the same time electrically influencing substrate regions at a higher level in the webs or short-circuiting bit lines from their sidewalls, unless complicated methods requiring additional lithography steps are used. A method for the self-aligning, selective contact-connection of the peripheral gate electrodes is performed with the aid of an insulation layer having a smaller layer thickness than the peripheral gate electrodes.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: June 15, 2004
    Assignee: Infineon Technologies AG
    Inventors: Till Schlösser, Dirk Manger
  • Publication number: 20040067661
    Abstract: A method is proposed for locally heating a region that is disposed in a substrate. A substrate is provided and at least one region is produced in the substrate with a lower specific resistance than the surrounding substrate. The region is then locally heated by inducing eddy currents by irradiation with electromagnetic energy.
    Type: Application
    Filed: July 2, 2003
    Publication date: April 8, 2004
    Inventor: Dirk Manger