Patents by Inventor Dirk Schaefer

Dirk Schaefer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210401534
    Abstract: The present invention relates to a device (1) for providing image data during an extraction procedure for extracting a lead from the body of a subject using an extraction device (7). The device comprises an input (2) for receiving live x-ray projection image data of the lead during the extraction procedure and for receiving three-dimensional image data as acquired before the extraction procedure. A processing unit (3) determines a position of the extraction device (7) in the three-dimensional image data by detecting the position in the live projection image data during the procedure and correlates this position in the live projection image data with the position in the three-dimensional image data. An output (4) generates an image of a cross-sectional view of the lead and/or its surrounding body structure at the determined position based on the three-dimensional image data.
    Type: Application
    Filed: September 20, 2019
    Publication date: December 30, 2021
    Inventors: Michael GRASS, Dirk SCHAEFER, Christian HAASE, Wade Allen BOWE
  • Patent number: 11172896
    Abstract: The present invention is directed towards a system and method for transarterial chemoembolization using differently sized drug-eluting microsphere beads filled with drugs and determining a delivered drug concentration using an imaging system.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 16, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christian Haase, Dirk Schaefer, Eberhard Sebastian Hansis, Tobias Klinder, Michael Grass, Ming De Lin
  • Publication number: 20210350593
    Abstract: An image processing system (IPS), comprising an input interface (IN) for receiving a projection image from a plurality of projection images of a movable object (PAT) acquired along different directions by an imaging apparatus (XA), the projection images defined in a projection domain spanned by a radiation sensitive surface of the detector (D). The system includes a motion checker (MC) configured to operate in the projection domain to decide whether the projection image is corrupted by motion of the object during acquisition.
    Type: Application
    Filed: August 20, 2019
    Publication date: November 11, 2021
    Inventors: Dirk SCHAEFER, Christian HAASE, Michael GRASS
  • Patent number: 11123034
    Abstract: An imaging system includes radiation source that emits radiation that traverses an examination region and a portion of a subject therein and a detector array that detects radiation that traverses the examination region and the portion of the subject therein and generates a signal indicative thereof. A volume scan parameter recommender recommends at least one spectral scan parameter value for a volume scan of the portion of the subject based on a spectral decomposition of first and second 2D projections acquired by the radiation source and detector array. The first and second 2D projections have different spectral characteristics. A console employs the recommended at least one spectral scan parameter value to perform the volume scan of the portion of the subject.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 21, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schaefer, Axel Thran, Thomas Koehler
  • Patent number: 11127173
    Abstract: The invention relates to off-center detector 3D X-ray or proton radiography reconstruction. Redundancy weighting with a steep weighting function around the iso-axis typically leads to artifacts in the reconstruction, for example, if inconsistencies between two nominal redundant projections occur, e.g. due to slightly incorrect detector calibration or scatter correction, etc. With the present invention, an approach is presented for overcoming or mitigating these problems.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 21, 2021
    Assignee: KONINKLIJKE PHILIPS N. V.
    Inventors: Dirk Schäfer, Peter George Van De Haar, Sebastien Brousmiche
  • Publication number: 20210241389
    Abstract: A device for agricultural management includes a processing unit to determine at least one geographical location of an agricultural land area, the determination comprising utilization of a GPS unit. Agricultural data is provided from an input unit to the processing unit. The processing unit determines agricultural management data, the determination comprising utilization of the at least one geographical location and the agricultural data. An output unit outputs agricultural management information to a user of the device on the basis of the agricultural management data.
    Type: Application
    Filed: July 26, 2018
    Publication date: August 5, 2021
    Applicant: Bayer Business Services GMBH
    Inventor: Dirk SCHÄFER
  • Patent number: 11072834
    Abstract: The invention relates to a continuous flow cooling device (3) for cooling a metal strip (1), in particular a metal strip made of aluminum or an aluminum alloy, having at least one strip flotation cooler (4), which has several upper nozzles (5) distributed along the strip travel direction (B), and several lower nozzles (6) distributed along the strip travel direction (B), wherein the metal strip (1) can be transported in a floating manner between the upper nozzles (5) and the lower nozzles (6), and the upper side of the strip as well as the underside of the strip can be supplied with cooling air in the process, and having several water cooling units (7), by means of which the metal strip (1) can be supplied with cooling water. This device is characterized in that the water cooling units (7) are integrated in the strip flotation cooler (4).
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 27, 2021
    Assignee: REDEX S.A.
    Inventors: Dirk Schaefer, Andreas Noe, Thomas Vonderohe
  • Patent number: 11071505
    Abstract: A system (SC) for controlling operation of a multi-focal-spot X-ray imager (IA). The system comprises a projection direction determiner (PDD) configured to determine a projection direction for an object (OB) to be imaged, based on a geometric structure of a model m(OB) for the object (OB). A selector (SX) of the system is configured to select, from the imager (IA)'s plurality of focal-spot-detector pairs (IPj) with different optical axes (OXj), at least one target pair whose optical axis corresponds to the determined projection direction.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: July 27, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schaefer, Michael Grass
  • Patent number: 11071504
    Abstract: The present invention relates to tomosynthesis. In order to further facilitate and improve the generation of three-dimensional image data, an X-ray imaging system (10) for calibration-free tomosynthesis is provided. The system comprises an imaging arrangement (12) with an X-ray detector unit (14) and an X-ray unit (16) comprising a plurality of X-ray sources (18). The system also comprises an image processing unit (20), an object receiving space (22), and a moving unit (24) for providing a relative movement between the imaging arrangement and an object of interest arranged at least partially in the object receiving space. The X-ray sources are provided in a known spatial relationship; the X-ray detector unit and the X-ray unit are also provided in a known spatial detector-sources-relationship. The moving unit provides a relative movement between the object of interest and the imaging arrangement in order to provide a plurality of system-to-object positions.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: July 27, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Dirk Schaefer
  • Publication number: 20210192807
    Abstract: An image processing system (IPS) and related method. The system (IPS) comprises an input interface (IN) for receiving an image (IM) of an object (OB) acquired by an imaging apparatus (IA). A kernel provider (KP) of the system (IPS) is configured to provide respective scatter kernels for at least two scatter types. A scatter correction module (SCM) of the system (IPS) is configured to perform a correction in the image based on the provided at least two kernels.
    Type: Application
    Filed: May 28, 2019
    Publication date: June 24, 2021
    Inventors: BERND MENSER, PETER PRINSEN, DIRK SCHAEFER, JENS WIEGERT
  • Patent number: 10939881
    Abstract: The present invention relates to a guidance device (10) for a TEE probe (20), a medical imaging system (1), a method for guiding a TEE probe (20), a computer program element for controlling such device and a computer readable medium having stored such computer program element. The guidance device (10) for a TEE probe (20) comprises an image data provision unit (11), and a processing unit (12). The image data provision unit (11) is configured to provide first image data showing an interventional device (40) and a TEE probe (20) in an initial position and orientation. The processing unit (12) is configured to determine a centerline of the interventional device (40) in the first image data. The processing unit (12) is configured to determine a plane (41) orthogonal to a tangent of the centerline as viewing plane. The processing unit (12) is configured to calculate an imaging plane and an imaging orientation of the TEE probe (20) to lie approximately in the viewing plane.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schäfer, Eberhard Sebastian Hansis, Niels Nijhof, Michael Grass
  • Patent number: 10929974
    Abstract: Present invention relates to devices and methods for determining a calcium content by analyzing cardiac spectral CT data. CT projection data (9), obtainable by scanning a cardiac region of a subject using a spectral CT scanning unit, is modelled (12) by applying a material decomposition algorithm to the projection data to provide a calcium-specific component. Tomographic reconstructions (13) of the projection data, to provide a first 3D image (8), and of the calcium-specific component, to provide a second 3D image (6), are performed. The first 3D image (8) is segmented (14) to provide an image mask (5) corresponding to a cardiovascular structure of interest, a part of the second 3D image (6) is selected (15) based on the image mask (5), and a calcium content is calculated (16) in the cardiovascular structure of interest based on the selected part of the second 3D image (6).
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: February 23, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schaefer, Heiner Daerr, Thomas Koehler, Ewald Roessl
  • Publication number: 20210012545
    Abstract: Cone beam computed tomography image acquisition protocols typically acquire a series of 2D projection images around a region of interest of a patient. The time required for a C-arm to travel around an acquisition orbit around the region of interest of a patient is non-trivial, and as a result, a patient being imaged may move during the acquisition. This is problematic because many computed tomography image acquisition algorithms assume that a patient is perfectly still during the acquisition time. If patient moves as the series of 2D projection images is being obtained, a 3D reconstruction will be affected by image artefacts. This application proposes to identify and to remove image artefacts caused by the relative motion of at least two rigid objects in the region of interest (For example, a mandible moving with respect to a skull during the acquisition).
    Type: Application
    Filed: March 18, 2019
    Publication date: January 14, 2021
    Inventors: CHRISTIAN HAASE, MICHAEL GRASS, DIRK SCHAEFER
  • Patent number: 10881365
    Abstract: An interventional X-ray system is proposed, the system including a multi X-ray source unit positioned below a patient table. This ‘multiblock’ may comprise several x-ray sources with focal spot positions distributed along the x-y (table) plane. The x-ray sources are operable in a switching scheme in which certain x-ray sources may be activated in parallel and also sequential switching between such groups is intended. The switching may be carried out so that several images with different projection angles can be acquired in parallel. In other words, an optimal multi-beam X-ray exposure is suggested, wherein fast switching in one dimension and simultaneous exposure in the 2nd dimension is applied.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 5, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gereon Vogtmeier, Klaus Juergen Engel, Michael Grass, Bernd Menser, Heidrun Steinhauser, Alberto Fazzi, Herman Stegehuis, Dirk Schaefer
  • Publication number: 20200379120
    Abstract: A hand held device for land management is described for a user of the device to provide agricultural information relating to a field, wherein the agricultural information includes information on at least one crop. A transmitter of the device transmits information including the agricultural information relating to the field. A receiver of the device receives agricultural data that includes best practices for the growing of the at least one crop. A processing unit of the device determines agricultural management information on the basis of the agricultural data. An output unit of the device outputs the agricultural management information to the user of the device.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 3, 2020
    Applicant: Bayer Business Services GMBH
    Inventor: Dirk SCHÄFER
  • Publication number: 20200329980
    Abstract: The invention discloses an apparatus (2), a system (1) and a method (100) for characterization of vessels and for vessel modeling. The cross sectional area (A1) of the vessel is derived from pressure measurements (p1,p2) obtained by an instrument (3) from within the vessel. When multiple cross sectional areas (A1,A2) are derived for multiple reference positions (r1,r2) based on pressure measurements (p1,p2,p3) along the vessel, a representation (20,30) of the vessel can be rendered, without requiring any imaging modality. Furthermore, the effect of the pulsatile blood flow on the elasticity of the vessel walls can be visualized, supporting assessment of a stenosis or an aneurysm formation along the vessel.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: Christian HAASE, Michael GRASS, Dirk SCHAEFER
  • Publication number: 20200315551
    Abstract: The present invention relates to tomosynthesis. In order to further facilitate and improve the generation of three-dimensional image data, an X-ray imaging system (10) for calibration-free tomosynthesis is provided. The system comprises an imaging arrangement (12) with an X-ray detector unit (14) and an X-ray unit (16) comprising a plurality of X-ray sources (18). The system also comprises an image processing unit (20), an object receiving space (22), and a moving unit (24) for providing a relative movement between the imaging arrangement and an object of interest arranged at least partially in the object receiving space. The X-ray sources are provided in a known spatial relationship; the X-ray detector unit and the X-ray unit are also provided in a known spatial detector-sources-relationship. The moving unit provides a relative movement between the object of interest and the imaging arrangement in order to provide a plurality of system-to-object positions.
    Type: Application
    Filed: June 5, 2017
    Publication date: October 8, 2020
    Inventors: Michael GRASS, Dirk SCHAEFER
  • Publication number: 20200315556
    Abstract: A system (SC) for controlling operation of a multi-focal-spot X-ray imager (IA). The system comprises a projection direction determiner (PDD) configured to determine a projection direction for an object (OB) to be imaged, based on a geometric structure of a model m(OB) for the object (OB). A selector (SX) of the system is configured to select, from the imager (IA)'s plurality of focal-spot-detector pairs (IPj) with different optical axes (OXj), at least one target pair whose optical axis corresponds to the determined projection direction.
    Type: Application
    Filed: May 8, 2017
    Publication date: October 8, 2020
    Applicant: Koninklijke Philips N.V.
    Inventors: Dirk SCHAEFER, Michael GRASS
  • Publication number: 20200311828
    Abstract: A hand held device for economic agricultural management is described for a user of the device to provide agricultural information relating to a field, wherein the agricultural information includes information on at least one crop. A transmitter of the device transmits information including the agricultural information relating to the field. A receiver of the device receives agricultural data that includes economic information relating to the at least one crop. A processing unit of the device determines economic agricultural management information on the basis of the agricultural data. An output unit of the device outputs the economic agricultural management information to the user of the device.
    Type: Application
    Filed: July 26, 2018
    Publication date: October 1, 2020
    Applicant: Bayer Business Services GMBH
    Inventor: Dirk SCHÄFER
  • Patent number: 10769787
    Abstract: The present invention relates to providing a projection data for providing a guidance image. In order to provide an enhanced guiding image technique for generating a guidance image of the patient's anatomy to be projected on the body surface of the patient, such that a at least a basis for a corrected guidance image for a better correlation to the patient's current motion can be provided, in particular to the patient's current breathing motion state, a device (10) for providing a projection data set is provided that comprises a storage means (12), an input interface (14), a processing unit (16) and an output interface (18). The storage means is configured to store a pre-determined basis data set representing a 3D tomographic image of a subject (20). The input interface is configured to receive reference data representing a current spatial depiction at least of a target region (22) of the subject. The processing unit is configured to register the reference data on the pre-determined basis data set.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: September 8, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Dirk Schäfer, Thirukumaran Thangaraj Kanagasabapathi, Bernardus Hendrikus Wilhelmus Hendriks