Patents by Inventor Dirk Schaefer

Dirk Schaefer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10694955
    Abstract: The invention discloses an apparatus (2), a system (1) and a method (100) for characterization of vessels and for vessel modeling. The cross sectional area (A1) of the vessel is derived from pressure measurements (p1, p2) obtained by an instrument (3) from within the vessel. When multiple cross sectional areas (A1, A2) are derived for multiple reference positions (r1, r2) based on pressure measurements (p1, p2, p3) along the vessel, a representation (20, 30) of the vessel can be rendered, without requiring any imaging modality. Furthermore, the effect of the pulsatile blood flow on the elasticity of the vessel walls can be visualized, supporting assessment of a stenosis or an aneurysm formation along the vessel.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christian Haase, Michael Grass, Dirk Schaefer
  • Publication number: 20200085389
    Abstract: The invention relates to off-center detector X-ray tomography reconstruction of an image of an object on the basis of projection data acquired during a rotation of an X-ray source and the off-center detector around the object in two rotational passes of less than 360°, wherein a focus point of the X-ray beam travels along largely overlapping arcs (401, 402) in the two rotational passes, the off-center detector being positioned asymmetrically with respect to a central of the X-ray beam and a direction of a detector offset being reversed between the passes. According to the invention, redundancy weighting of the projection data with respect to a redundant acquisition of projection values during each of the rotational passes is made using a redundancy weighting function determined on the basis of a union of the arcs (401, 402).
    Type: Application
    Filed: December 19, 2017
    Publication date: March 19, 2020
    Inventor: Dirk SCHÄFER
  • Publication number: 20200090379
    Abstract: The invention relates to off-center detector 3D X-ray or proton radiography reconstruction. Redundancy weighting with a steep weighting function around the iso-axis typically leads to artifacts in the reconstruction, for example, if inconsistencies between two nominal redundant projections occur, e.g. due to slightly incorrect detector calibration or scatter correction, etc. With the present invention, an approach is presented for overcoming or mitigating these problems.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Dirk SCHÄFER, Peter George VAN DE HAAR, Sebastien BROUSMICHE
  • Publication number: 20200054302
    Abstract: An imaging system includes radiation source that emits radiation that traverses an examination region and a portion of a subject therein and a detector array that detects radiation that traverses the examination region and the portion of the subject therein and generates a signal indicative thereof. A volume scan parameter recommender recommends at least one spectral scan parameter value for a volume scan of the portion of the subject based on a spectral decomposition of first and second 2D projections acquired by the radiation source and detector array. The first and second 2D projections have different spectral characteristics. A console employs the recommended at least one spectral scan parameter value to perform the volume scan of the portion of the subject.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: DIRK SCHAEFER, AXEL THRAN, THOMAS KOEHLER
  • Patent number: 10561383
    Abstract: The invention relates to an imaging system (10) for imaging an elongated region of interest of an object, an imaging method for imaging an elongated region of interest of an object, a computer program element for controlling such system for performing such method and a computer readable medium having stored such computer program element. The imaging system (10) comprises an acquisition unit (11) and a processing unit (13). The acquisition unit (11) is a C-arm acquisition unit and configured to acquire first image data of the object to be imaged with a first imaging parameter. The acquisition unit (11) is further configured to acquire second, different image data of an object to be imaged with a second imaging parameter. The second geometric imaging parameter is defined based on object specific data for the volume data to be aligned with the elongated region of interest of the object to be imaged. The processing unit (13) is configured to combine the first and second image data into volume data.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 18, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Eberhard Sebastian Hansis, Dirk Schäfer, Tobias Klinder, Christian Haase, Hanno Heyke Homann
  • Patent number: 10552958
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination, the device (1) comprising: a model source (10) configured to provide a first three-dimensional model (3DM1) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS) and configured to provide a second three-dimensional model (3DM2) of a pressure wire insertable into the vascular vessel tree (VVT); and a processor (20) configured to calculate a first blood flow (Q1) through the stenosed vessel segment (SVS) with the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first and the second three-dimensional model and to calculate a second blood flow (Q2) through the stenosed vessel segment (SVS) without the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first three-dimensional model (3DM1) and to determine a first fractional flow reserve value (FFR1) to be measured with the pressure wire (PW) inserted into the vascular vessel tree (
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: February 4, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Eberhard Sebastian Hansis, Holger Schmitt, Michael Grass, Dirk Schaefer, Hanno Heyke Homann, Tobias Klinder, Christian Haase
  • Patent number: 10485503
    Abstract: An imaging system includes radiation source (106) that emits radiation that traverses an examination region and a portion of a subject therein and a detector array (114) that detects radiation that traverses the examination region and the portion of the subject therein and generates a signal indicative thereof. A volume scan parameter recommender (120) recommends at least one spectral scan parameter value for a volume scan of the portion of the subject based on a spectral decomposition of first and second 2D projections acquired by the radiation source and detector array. The first and second 2D projections have different spectral characteristics. A console (122) employs the recommended at least one spectral scan parameter value to perform the volume scan of the portion of the subject.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 26, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schaefer, Axel Thran, Thomas Koehler
  • Patent number: 10472699
    Abstract: The invention relates to a device for continuous treatment of a metal strip (1), in particular a metal strip consisting of aluminum or an aluminum alloy, or consisting of a non-ferrous metal or a non-ferrous metal alloy, said device comprising at least one temperature control device (2) through which the metal strip (1) is guided in a floating manner, and comprising at least one strip position regulation unit (7), by means of which the position of the metal strip (1) can be controlled or regulated on the belt movement plane (E) and transversely to the strip running direction (B), wherein the temperature control device (2) has at least one entry-side heating section (3) and an exit-side cooling section (4).
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: November 12, 2019
    Assignee: BWG BERGWERK—UND WALZWERK—MASCHINENBAU GMBH
    Inventors: Dieter Baukloh, Andreas Noe, Dirk Schaefer
  • Publication number: 20190295249
    Abstract: Present invention relates to devices and methods for determining a calcium content by analyzing cardiac spectral CT data. CT projection data (9), obtainable by scanning a cardiac region of a subject using a spectral CT scanning unit, is modelled (12) by applying a material decomposition algorithm to the projection data to provide a calcium-specific component. Tomographic reconstructions (13) of the projection data, to provide a first 3D image (8), and of the calcium-specific component, to provide a second 3D image (6), are performed. The first 3D image (8) is segmented (14) to provide an image mask (5) corresponding to a cardiovascular structure of interest, a part of the second 3D image (6) is selected (15) based on the image mask (5), and a calcium content is calculated (16) in the cardiovascular structure of interest based on the selected part of the second 3D image (6).
    Type: Application
    Filed: June 14, 2017
    Publication date: September 26, 2019
    Inventors: Dirk SCHAEFER, Heiner DAERR, Thomas KOEHLER, Ewald ROESSL
  • Patent number: 10417765
    Abstract: The present invention relates to a system (1) for adaptive segmentation. The system (1) comprises a configurator (10), which is configured to determine an adapted angular range (AR) with respect to an operation mode of the system (1) and which is configured to determine a segmentation parameter (SP) based on the adapted angular range (AR). Further, the system comprises an imaging sensor (20), which is configured to acquire images (I1, . . . , IN) within the adapted angular range (AR). Still further, the system comprises a segmentator (30), which is configured to generate a segmentation model based on the acquired images (I1, . . . , IN) using the determined segmentation parameter (SP).
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: September 17, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Axel Saalbach, Pieter Gerben Eshuis, Wilhelmus Henrica Gerarda Maria Van Den Boomen, Dirk Schäfer, Juergen Weese
  • Patent number: 10405821
    Abstract: The present invention relates to an imaging system (10) for a vertebral level, an identification method for a vertebral level, a computer program element for controlling such system and a computer readable medium having stored such computer program element. The imaging system (10) comprises a determination unit (11), a definition unit (12), an imaging unit (13), and a processing unit (14). The determination unit (11) determines a target vertebral level. The definition unit (12) defines an anatomical landmark of a spine. The imaging unit (13) provides a series of X-ray images along the spine based on the landmark. The processing unit (14) identifies the target vertebral level in at least one of the X-ray images. The processing unit (14) further stitches the X-ray images to a continuous panoramic image of the spine and identifies the target vertebral level in the panoramic image.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: September 10, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Eberhard Sebastian Hansis, Dirk Schaefer, Michael Grass
  • Publication number: 20190209107
    Abstract: An interventional X-ray system is proposed, the system including a multi X-ray source unit positioned below a patient table. This ‘multiblock’ may comprise several x-ray sources with focal spot positions distributed along the x-y (table) plane. The x-ray sources are operable in a switching scheme in which certain x-ray sources may be activated in parallel and also sequential switching between such groups is intended. The switching may be carried out so that several images with different projection angles can be acquired in parallel. In other words, an optimal multi-beam X-ray exposure is suggested, wherein fast switching in one dimension and simultaneous exposure in the 2nd dimension is applied.
    Type: Application
    Filed: May 12, 2017
    Publication date: July 11, 2019
    Inventors: Gereon VOGTMEIER, Klaus Juergen ENGEL, Michael GRASS, Bernd MENSER, Heidrun STEINHAUSER, Alberto FAZZI, Herman STEGEHUIS, Dirk SCHAEFER
  • Patent number: 10251594
    Abstract: Minimally-invasive spinal inventions are often performed using fluoroscopic imaging methods, which can give a real-time impression of the location of a surgical instrument, at the expense of a small field of view. When operating on a spinal column, a small field of view can be a problem, because a medical professional is left with no reference vertebra in the fluoroscopy image, from which to identify a vertebra, which is the subject of the intervention. Identifying contiguous vertebrae is difficult because such contiguous vertebrae are similar in shape. However, characteristic features, which differentiate one vertebra from other vertebra, and which are visible in the fluoroscopic view, may be used to provide a reference.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tobias Klinder, Eberhard Sebastian Hansis, Michael Grass, Dirk Schaefer, Hanno Heyke Homann, Christian Haase
  • Publication number: 20190059839
    Abstract: The invention relates to an apparatus configured to display an aortic valve image and an indicator when the aortic valve is in its open-state and/or when the valve is in its closed-state. The indicator is supposed to be in an overlay to the image of the aortic valve, such that a physician can see on the same display image the information needed to advance a guide wire or catheter through the aortic valve of a heart. This may prevent damaging ensures not to damage the aortic valve. The physician receives the relevant information, when the aortic valve is in its open-state and thus being in a state to be passed by the catheter. The information, whether the aortic valve is in its open-state or in its closed-state, corresponds to the systolic phase and the distal phase of the heart, respectively. The information, when the heart is in its systolic phase and when it is in the diastolic phase may be extracted from an ECG measurement.
    Type: Application
    Filed: October 27, 2016
    Publication date: February 28, 2019
    Inventors: Dirk SCHAEFER, Cherif SAHYOUN, Eberhard Sebastian HANSIS, Christian HAASE, Tobias KLINDER, Michael GRASS
  • Publication number: 20190046047
    Abstract: The invention discloses an apparatus (2), a system (1) and a method (100) for characterization of vessels and for vessel modeling. The cross sectional area (A1) of the vessel is derived from pressure measurements (p1, p2) obtained by an instrument (3) from within the vessel. When multiple cross sectional areas (A1, A2) are derived for multiple reference positions (r1, r2) based on pressure measurements (p1, p2, p3) along the vessel, a representation (20, 30) of the vessel can be rendered, without requiring any imaging modality. Furthermore, the effect of the pulsatile blood flow on the elasticity of the vessel walls can be visualized, supporting assessment of a stenosis or an aneurysm formation along the vessel.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 14, 2019
    Inventors: Christian HAASE, Michael GRASS, Dirk SCHAEFER
  • Patent number: 10172574
    Abstract: An interventional X-ray system (10), includes a processing unit (30), a table (20) for receiving a patient (44), an X-ray image acquisition device (12) having an X-ray source (16) and an X-ray detector (18) and at least one optical camera (46) adapted for acquiring optical images of a patient (44) situated on the table (20) and for providing image data to the processing unit (30). The processing unit (30) is adapted for segmenting an outline (64) of a patient from an existing three-dimensional model, for receiving acquired images from the at least one camera (46) for determining an optical outline (66) of the patient, for registering the optical outline (66) to the outline (64) obtained in the segmentation and for determining a translation vector (48) representing a required movement of the table for coinciding a center (42) of the anatomy of interest given in the three-dimensional model with the iso-center (38) of a rotational X-ray scan that will be performed.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 8, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schäfer, Robert Johannes Frederik Homan, Michael Grass
  • Publication number: 20190005646
    Abstract: The present invention relates to providing a projection data for providing a guidance image. In order to provide an enhanced guiding image technique for generating a guidance image of the patient's anatomy to be projected on the body surface of the patient, such that a at least a basis for a corrected guidance image for a better correlation to the patient's current motion can be provided, in particular to the patient's current breathing motion state, a device (10) for providing a projection data set is provided that comprises a storage means (12), an input interface (14), a processing unit (16) and an output interface (18). The storage means is configured to store a pre-determined basis data set representing a 3D tomographic image of a subject (20). The input interface is configured to receive reference data representing a current spatial depiction at least of a target region (22) of the subject. The processing unit is configured to register the reference data on the pre-determined basis data set.
    Type: Application
    Filed: December 22, 2016
    Publication date: January 3, 2019
    Inventors: Michael GRASS, Dirk SCHÄFER, Thirukumaran Thangaraj KANAGASABAPATHI, Bernardus Hendrikus Wilhelmus HENDRIKS
  • Publication number: 20180327876
    Abstract: The invention relates to a continuous flow cooling device (3) for cooling a metal strip (1), in particular a metal strip made of aluminum or an aluminum alloy, having at least one strip flotation cooler (4), which has several upper nozzles (5) distributed along the strip travel direction (B), and several lower nozzles (6) distributed along the strip travel direction (B), wherein the metal strip (1) can be transported in a floating manner between the upper nozzles (5) and the lower nozzles (6), and the upper side of the strip as well as the underside of the strip can be supplied with cooling air in the process, and having several water cooling units (7), by means of which the metal strip (1) can be supplied with cooling water. This device is characterized in that the water cooling units (7) are integrated in the strip flotation cooler (4).
    Type: Application
    Filed: January 10, 2017
    Publication date: November 15, 2018
    Inventors: Dirk SCHAEFER, Andreas NOE, Thomas VONDEROHE
  • Publication number: 20180286045
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination, the device (1) comprising: a model source (10) configured to provide a first three-dimensional model (3DM1) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS) and configured to provide a second three-dimensional model (3DM2) of a pressure wire insertable into the vascular vessel tree (VVT); and a processor (20) configured to calculate a first blood flow (Q1) through the stenosed vessel segment (SVS) with the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first and the second three-dimensional model and to calculate a second blood flow (Q2) through the stenosed vessel segment (SVS) without the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first three-dimensional model (3DM1) and to determine a first fractional flow reserve value (FFR1) to be measured with the pressure wire (PW) inserted into the vascular vessel tree (
    Type: Application
    Filed: April 26, 2016
    Publication date: October 4, 2018
    Inventors: Eberhard Sebastian HANSIS, Holger SCHMITT, Michael GRASS, Dirk SCHAEFER, Hanno Heyke HOMANN, Tobias KLINDER, Christian HAASE
  • Publication number: 20180279973
    Abstract: The invention relates to an X-ray apparatus (10) and a method (64) for a depth localization of a catheter (12) within an object of interest (22), arranged at an object receiving space (14) of the X-ray imaging apparatus. The X-ray imaging apparatus comprises an X-ray source (16) and an X-ray detector (20). Between the X-ray source and the X-ray detector, at least one interferometer (24) formed by a phase grating is arranged. The X-ray detector is configured to detect X-ray radiation, which has been influenced by the phase grating and the object of interest and the catheter, which may also be arranged at the object receiving space and/or the object of interest. The X-ray detector is configured to provide a detector signal s. A signal component of the detector signal relates to a phase-contrast detector signal component, which may be calculated on the basis of the detector signal and may represent a visibility loss.
    Type: Application
    Filed: September 29, 2016
    Publication date: October 4, 2018
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: DIRK SCHAEFER, MICHAEL GRASS, THOMAS KOEHLER