Patents by Inventor Dmitry Lubomirsky

Dmitry Lubomirsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200090972
    Abstract: Exemplary support assemblies may include a top puck defining a substrate support surface, where the top puck is also characterized by a height. The assemblies may include a stem coupled with the top puck on a second surface of the top puck opposite the substrate support surface. The assemblies may include an RF electrode embedded within the top puck proximate the substrate support surface. The assemblies may include a heater embedded within the top puck. The assemblies may also include a ground shield embedded within the top puck. The ground shield may be characterized by an inner region extending radially through the top puck. The ground shield may further be characterized by an outer region extending perpendicular to the inner region.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Applicant: Applied Materials, Inc.
    Inventors: David Benjaminson, Michael Grace, Soonam Park, Dmitry Lubomirsky, Jaeyong Cho, Nikolai Kalnin, Don Channa K. Kaluarachchi
  • Patent number: 10593523
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10593560
    Abstract: Exemplary magnetic induction plasma systems for generating plasma products are provided. The magnetic induction plasma system may include a first plasma source including a plurality of first sections and a plurality of second sections arranged in an alternating manner and fluidly coupled with each other such that at least a portion of plasma products generated inside the first plasma source may circulate through at least one of the plurality of first sections and at least one of the plurality of second sections inside the first plasma source. Each of the plurality of second sections may include a dielectric material. The system may further include a plurality of first magnetic elements each of which may define a closed loop. Each of the plurality of second sections may define a plurality of recesses for receiving one of the plurality of first magnetic elements therein.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonwook Jung, Junghoon Kim, Satoru Kobayashi, Kenneth D. Schatz, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10577690
    Abstract: Embodiments disclosed herein generally relate to a gas distribution assembly for providing improved uniform distribution of processing gases into a semiconductor processing chamber. The gas distribution assembly includes a gas distribution plate, a blocker plate, and a dual zone showerhead. The gas distribution assembly provides for independent center to edge flow zonality, independent two precursor delivery, two precursor mixing via a mixing manifold, and recursive mass flow distribution in the gas distribution plate.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: March 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anh N. Nguyen, Dmitry Lubomirsky, Mehmet Tugrul Samir
  • Publication number: 20200066556
    Abstract: A workpiece holder includes a puck having a cylindrical axis, a radius about the cylindrical axis, and a thickness. At least a top surface of the puck is substantially planar, and the puck defines one or more thermal breaks. Each thermal break is a radial recess that intersects at least one of the top surface and a bottom surface of the cylindrical puck. The radial recess has a thermal break depth that extends through at least half of the puck thickness, and a thermal break radius that is at least one-half of the puck radius. A method of processing a wafer includes processing the wafer with a first process that provides a first center-to-edge process variation, and subsequently, processing the wafer with a second process that provides a second center-to-edge process variation that substantially compensates for the first center-to-edge process variation.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Applicant: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky
  • Patent number: 10573496
    Abstract: An apparatus for supplying plasma products includes a plasma generation block that defines a toroidal plasma cavity therein. The plasma cavity is substantially symmetric about a toroidal axis, and the toroidal axis defines a first and second axial side of the plasma generation block. A magnetic element at least partially surrounds the plasma generation block at one azimuthal location with respect to the toroidal axis, such that a magnetic flux within the magnetic element induces a corresponding electric field into the plasma cavity to generate a plasma from one or more source gases, the plasma forming plasma products. The plasma generation block supplies the plasma products through a plurality of output apertures defined by the plasma generation block on the first axial side.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: February 25, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Publication number: 20200058516
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10559451
    Abstract: An exhaust module for a substrate processing apparatus having a body, a pumping ring, and a symmetric flow valve, is disclosed herein. The body has a first and second vacuum pump opening formed therethrough. The pumping ring is positioned in the body over both the first and second vacuum pump openings. The pumping ring includes a substantially ring shaped body having a top surface, a bottom surface, and an opening. The top surface has one or more through holes formed therein, arranged in a pattern concentric with the first vacuum pump opening. The bottom surface has a fluid passage formed therein, interconnecting each of the one or more through holes. The opening is formed in the substantially ring shaped body, substantially aligned with the vacuum pump opening. The symmetric flow valve is positioned in the body over the pumping ring and movable between a raised position and a lowered position.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: February 11, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Nikolai Nikolaevich Kalnin, Toan Q. Tran, Dmitry Lubomirsky
  • Patent number: 10551328
    Abstract: A test fixture includes an outer conductor and an inner conductor disposed within and electrically isolated from the outer conductor. The inner conductor includes a top portion having a first diameter, a bottom portion having a second diameter, and a third portion proximate the bottom portion that has a third diameter that is less than the second diameter and is greater than the first diameter. An electrical property of a chamber component disposed within the outer conductor is measurable based on application of a signal to at least one of the outer conductor or the inner conductor.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 4, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Yufei Zhu, Saurabh Garg, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10550472
    Abstract: Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: February 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kien N. Chuc, Qiwei Liang, Hanh D. Nguyen, Xinglong Chen, Matthew Miller, Soonam Park, Toan Q. Tran, Adib Khan, Jang-Gyoo Yang, Dmitry Lubomirsky, Shankar Venkataraman
  • Patent number: 10546729
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of the semiconductor processing chamber. The chambers may include a pedestal. The chambers may include a first showerhead positioned between the lid and the processing region, and may include a faceplate positioned between the first showerhead and the processing region. The chambers may also include a second showerhead positioned within the chamber between the faceplate and the processing region of the semiconductor processing chamber. The second showerhead may include at least two plates coupled together to define a volume between the at least two plates. The at least two plates may at least partially define channels through the second showerhead, and each channel may be characterized by a first diameter at a first end of the channel and may be characterized by a plurality of ports at a second end of the channel.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10541113
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber may include a showerhead positioned within the chamber housing, and the showerhead may at least partially divide the interior region into a remote region and a processing region in which a substrate can be contained. The chamber may also include an inductively coupled plasma source positioned between the showerhead and the processing region. The inductively coupled plasma source may include a conductive material within a dielectric material.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10541184
    Abstract: Embodiments may include a method of etching. The method may also include flowing a gas mixture through a plasma discharge to form plasma effluents. The method may further include flowing the plasma effluents through a plurality of apertures to a layer on a substrate. The layer may have a first thickness. In addition, the method may include etching the layer with the plasma effluents. The method may also include measuring the intensity of emission from a reaction of plasma effluents with the layer. The method may further include summing the intensity of the emission while the plasma effluents are being flowed to the layer to obtain an integrated intensity. The method may then include comparing the integrated intensity to a reference value corresponding to a target etch thickness. The method may include extinguishing the plasma discharge when the integrated intensity is equal to or greater than the reference value.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonwook Jung, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10522371
    Abstract: Semiconductor systems and methods may include a semiconductor processing chamber having a gas box defining an access to the semiconductor processing chamber. The chamber may include a spacer characterized by a first surface with which the gas box is coupled, and the spacer may define a recessed ledge on an interior portion of the first surface. The chamber may include a support bracket seated on the recessed ledge that extends along a second surface of the spacer. The chamber may also include a gas distribution plate seated on the support bracket.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 31, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Lok Kee Loh, Dmitry Lubomirsky, Soonwook Jung, Martin Yue Choy, Soonam Park
  • Publication number: 20190385823
    Abstract: Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
    Type: Application
    Filed: July 15, 2019
    Publication date: December 19, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Qiwei Liang, Xinglong Chen, Kien Chuc, Dmitry Lubomirsky, Soonam Park, Jang-Gyoo Yang, Shankar Venkataraman, Toan Tran, Kimberly Hinckley, Saurabh Garg
  • Patent number: 10504697
    Abstract: Embodiments of the present disclosure generally relate to an apparatus and method for reducing particle generation in a processing chamber. In one embodiment, an apparatus for processing a substrate is disclosed. The apparatus includes a chamber body, a lid assembly disposed above the chamber body, the lid assembly comprising a top electrode and a bottom electrode positioned substantially parallel to the top electrode, a gas distribution plate disposed between a substrate processing region and the lid assembly, and a substrate support disposed within the chamber body, the substrate support supporting having a substrate supporting surface, wherein the top electrode is in electrical communication with a radio frequency (RF) power supply and a DC bias modulation configuration, and the DC bias modulation configuration is configured to operate the top electrode at a constant zero DC bias voltage during a process.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jonghoon Baek, Soonam Park, Xinglong Chen, Dmitry Lubomirsky
  • Patent number: 10504700
    Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
  • Patent number: 10504754
    Abstract: Semiconductor systems and methods may include a semiconductor processing chamber having a gas box defining an access to the semiconductor processing chamber. The chamber may include a spacer characterized by a first surface with which the gas box is coupled, and the spacer may define a recessed ledge on an interior portion of the first surface. The chamber may include a support bracket seated on the recessed ledge that extends along a second surface of the spacer. The chamber may also include a gas distribution plate seated on the support bracket.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Lok Kee Loh, Dmitry Lubomirsky, Soonwook Jung, Martin Yue Choy, Soonam Park
  • Publication number: 20190371577
    Abstract: Implementations described herein provide a substrate support assembly which enables temperature uniformity across a workpiece surface. In one embodiment, a substrate support assembly is provided that includes a body. The body made from ceramic. The body having a workpiece support surface and a mounting surface. The workpiece support surface and the bonding chuck body surface having a flatness of less than 10 microns. A first heater is disposed on the bottom surface outside the body. A bonding layer is disposed over the first heater, wherein the bonding layer is electrically insulating and a cooling base having a body made from a metal. The cooling body having an upper cooling body surface and a lower cooling body surface wherein the upper cooling body surface is less than about 10 microns flat.
    Type: Application
    Filed: May 3, 2019
    Publication date: December 5, 2019
    Inventors: David BENJAMINSON, Vijay D. PARKHE, Onkara Swamy KORA SIDDARAMAIAH, Kirby H. FLOYD, Justin WANG, Mehmet Tugrul SAMIR, Dmitry LUBOMIRSKY
  • Publication number: 20190362944
    Abstract: A system includes a process chamber, a housing that defines a waveguide cavity, and a first conductive plate within the housing. The first conductive plate faces the process chamber. The system also includes one or more adjustment devices that can adjust at least a position of the first conductive plate, and a second conductive plate, coupled with the housing, between the waveguide cavity and the process chamber. Electromagnetic radiation can propagate from the waveguide cavity into the process chamber through apertures in the second conductive plate. The system also includes a dielectric plate that seals off the process chamber from the waveguide cavity, and one or more electronics sets that transmit the electromagnetic radiation into the waveguide cavity. A plasma forms when at least one process gas is within the chamber, and the electromagnetic radiation propagates into the process chamber from the waveguide cavity.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Nikolai Kalnin, Soonam Park, Toan Tran, Dmitry Lubomirsky