Patents by Inventor Dominic J. Benvegnu

Dominic J. Benvegnu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8932107
    Abstract: A polishing apparatus includes a platen to hold a polishing pad having a plurality of optical apertures, a carrier head to hold a substrate against the polishing pad, a motor to generate relative motion between the carrier head and the platen, and an optical monitoring system. The optical monitoring system includes at least one light source, a common detector, and an optical assembly configured to direct light from the at least one light source to each of a plurality of separated positions in the platen, to direct light from each position of the plurality of separated positions to the substrate as the substrate passes over said each position, to receive reflected light from the substrate as the substrate passes over said each position, and to direct the reflected light from each of the plurality of separated positions to the common detector.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 13, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu, Sivakumar Dhandapani
  • Patent number: 8892568
    Abstract: A method of controlling polishing includes storing a library having a plurality of reference spectra, polishing a substrate, measuring a sequence of spectra of light from the substrate during polishing, for each measured spectrum of the sequence of spectra, finding a best matching reference spectrum using a matching technique other than sum of squared differences to generate a sequence of best matching reference spectra, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the sequence of best matching reference spectra. Finding a best matching reference spectrum may include performing a cross-correlation of the measured spectrum with each of two or more of the plurality of reference spectra from the library and selecting a reference spectrum with the greatest correlation to the measured spectrum as a best matching reference spectrum.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: November 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Xiaoyuan Hu
  • Patent number: 8874250
    Abstract: Methods, systems, and apparatus for spectrographic monitoring of a substrate during chemical mechanical polishing are described. In one aspect, a computer-implemented method includes storing a library having a plurality of reference spectra, each reference spectrum of the plurality of reference spectra having a stored associated index value, measuring a sequence of spectra in-situ during polishing to obtain measured spectra, for each measured spectrum of the sequence of spectra, finding a best matching reference spectrum to generate a sequence of best matching reference spectra, determining the associated index value for each best matching spectrum from the sequence of best matching reference spectra to generate a sequence of index values, fitting a linear function to the sequence of index values, and halting the polishing either when the linear function matches or exceeds a target index or when the associated index value from the determining step matches or exceeds the target index.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Harry Q. Lee, Boguslaw A. Swedek, Lakshmanan Karuppiah
  • Publication number: 20140316550
    Abstract: A computer implemented method of monitoring a polishing process includes, for each sweep of a plurality of sweeps of an optical sensor across a substrate undergoing polishing, obtaining a plurality of current spectra, each current spectrum of the plurality of current spectra being a spectrum resulting from reflection of white light from the substrate, for each sweep of the plurality of sweeps, determining a difference between each current spectrum and each reference spectrum of a plurality of reference spectra to generate a plurality of differences, for each sweep of the plurality of sweeps, determining a smallest difference of the plurality of differences, thus generating a sequence of smallest difference, and determining a polishing endpoint based on the sequence of smallest differences.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David
  • Publication number: 20140273745
    Abstract: A method of controlling a polishing operation includes receiving a first measurement of a first amount of metal on a substrate made by a first x-ray monitoring system after a first metal layer is deposited on the substrate and before a second metal layer is deposited on the substrate, transferring the substrate to a carrier head of a chemical mechanical polishing apparatus the substrate after the second metal layer is deposited on the substrate, making a second measurement of a second amount of metal on the substrate with a second x-ray monitoring system in the chemical mechanical polishing apparatus, comparing the first measurement to the second measurement to determine a difference, and adjusting a polishing endpoint or a polishing parameter of the polishing apparatus based on the difference.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Dominic J. Benvegnu, Wen-Chiang Tu
  • Publication number: 20140242878
    Abstract: A method of controlling a polishing operation includes measuring a plurality of spectra at a plurality of different positions on a substrate to provide a plurality of measured spectra. For each measured spectrum of the plurality of measured spectra, a characterizing value is generated based on the measured spectrum. For each characterizing value, a goodness of fit of the measured spectrum to another spectrum used in generating the characterizing value is determined. A wafer-level characterizing value map is generated by applying a regression to the plurality of characterizing values with the plurality of goodnesses of fit used as weighting factors in the regression. A polishing endpoint or a polishing parameter of the polishing apparatus is adjusted based on the wafer-level characterizing map, and the substrate or a subsequent substrate is polished in the polishing apparatus with the adjusted polishing endpoint or polishing parameter.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Cherian, Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu, Jun Qian, Thomas H. Osterheld
  • Publication number: 20140242879
    Abstract: A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Benjamin Cherian, Dominic J. Benvegnu, Boguslaw A. Swedek, Thomas H. Osterheld, Jun Qian, Thomas Li, Doyle E. Bennett, David J. Lischka, Steven M. Zuniga
  • Patent number: 8815109
    Abstract: A computer implemented method of monitoring a polishing process includes, for each sweep of a plurality of sweeps of an optical sensor across a substrate undergoing polishing, obtaining a plurality of current spectra, each current spectrum of the plurality of current spectra being a spectrum resulting from reflection of white light from the substrate, for each sweep of the plurality of sweeps, determining a difference between each current spectrum and each reference spectrum of a plurality of reference spectra to generate a plurality of differences, for each sweep of the plurality of sweeps, determining a smallest difference of the plurality of differences, thus generating a sequence of smallest difference, and determining a polishing endpoint based on the sequence of smallest differences.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 26, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David
  • Publication number: 20140206259
    Abstract: A substrate polishing system includes a platen to support a polishing surface, a carrier head configured to hold a substrate against the polishing surface during polishing, a light source configured to direct a light beam onto a surface of the substrate, a detector including an array of detection elements, and a controller. The detector is configured to detect reflections of the light beam from an area of the surface, and is configured to generate an image having pixels representing regions on the substrate having a length less than 0.1 mm. The controller is configured to receive the image and to detect clearance of a metal layer from an underlying layer on the substrate based on the image.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 24, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek
  • Patent number: 8758086
    Abstract: A system method and apparatus to monitor a frictional coefficient of a substrate undergoing polishing is described. A polishing pad assembly includes a polishing layer including a polishing surface, and a substrate contacting member flexibly coupled to the polishing layer having a top surface to contact an exposed surface of a substrate. At least a portion of the top surface is substantially coplanar with the polishing surface. A sensor is provided to measure a lateral displacement of the substrate contacting member. Some embodiments may provide accurate endpoint detection during chemical mechanical polishing to indicate the exposure of an underlying layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: June 24, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Gabriel Lorimer Miller, Manoocher Birang, Nils Johansson, Boguslaw A. Swedek, Dominic J. Benvegnu
  • Patent number: 8755928
    Abstract: A computer-implemented method of generating reference spectra includes polishing a plurality of set-up substrates, the plurality of set-up substrates comprising at least three set-up substrates, measuring a sequence of spectra from each of the plurality of set-up substrates during polishing with an in-situ optical monitoring system to provide a plurality of sequences of spectra, generating a plurality of sequences of potential reference spectra from the plurality of sequences of spectra, determining which sequence of potential reference spectra of the plurality of sequences provides a best match to remaining sequences of the plurality of sequences, and storing the sequence of potential reference spectra determined to provide the best match as reference spectra, and selecting and storing the sequence of potential reference spectra.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: June 17, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Harry Q. Lee, Zhihong Wang, Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu
  • Patent number: 8751033
    Abstract: A method of controlling polishing includes polishing a substrate, monitoring a substrate during polishing with an in-situ monitoring system, generating a sequence of values from measurements from the in-situ monitoring system, fitting a non-linear function to the sequence of values, determining a projected time at which the non-linear function reaches a target value; and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the projected time.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 10, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Boguslaw A. Swedek, Harry Q. Lee
  • Publication number: 20140141696
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 22, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D Ambra, Jagan Rangarajan
  • Publication number: 20140141695
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 22, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan
  • Patent number: 8718810
    Abstract: While a substrate is polished, it is also irradiated with light from a light source. A current spectrum of the light reflected from the surface of the substrate is measured. A selected peak, having a first parameter value, is identified in the current spectrum. A value of a second parameter associated with the first parameter is determined from a lookup table using a processor. Depending on the value of the second parameter, the polishing of the substrate is changed. An initial spectrum of light reflected from the substrate before the polishing of the substrate can be measured and a wavelength corresponding to a selected peak of the initial spectrum can be determined.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: May 6, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, Jeffrey Drue David, Harry Q. Lee
  • Patent number: 8679979
    Abstract: A method of controlling the polishing of a substrate includes polishing a substrate on a first platen using a first set of parameters, obtaining first and second sequences of measured spectra from first and second regions of the substrate with an in-situ optical monitoring system, generating first and second sequences of values from the first and second sequences of measured spectra, fitting first and second linear functions to the first and second sequences of values, determining a difference between the first linear function and the second linear function, adjusting at least one parameter of a second set of parameters based on the difference, and polishing the substrate on a second platen using the adjusted parameter.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Harry Q. Lee, Boguslaw A. Swedek, Dominic J. Benvegnu, Zhize Zhu, Wen-Chiang Tu
  • Publication number: 20140080232
    Abstract: A polishing system receives one or more target parameters for a selected peak in a spectrum of light, polishes a substrate, measures a current spectrum of light reflected from the substrate while the substrate is being polished, identifies the selected peak in the current spectrum, measures one or more current parameters of the selected peak in the current spectrum, compares the current parameters of the selected peak to the target parameters, and ceases to polish the substrate when the current parameters and the target parameters have a pre defined relationship.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, David J. Lischka
  • Patent number: 8657646
    Abstract: A method of polishing includes polishing a substrate, making a sequence of measurements of light reflected from the substrate while the substrate is being polished, at least some of the measurements of the sequence of measurements differing due to material being removed during polishing, for each measurement in the sequence, determining a first value of a first characteristic and a second value of a different second characteristic of the light to generate a sequence of first values and second values, storing a predetermined path in a coordinate space of the first characteristic and the second characteristic, for each measurement in the sequence, determining a position on the path based on the first value and the second value, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the position on the path.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek
  • Publication number: 20140045282
    Abstract: Methods of determining a polishing endpoint are described using spectra obtained during a polishing sequence. In particular, techniques for using only desired spectra, faster searching methods and more robust rate determination methods are described.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 13, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Harry Q. Lee, Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David
  • Publication number: 20140039660
    Abstract: Methods, systems, and apparatus for spectrographic monitoring of a substrate during chemical mechanical polishing are described. In one aspect, a computer-implemented method includes storing a library having a plurality of reference spectra, each reference spectrum of the plurality of reference spectra having a stored associated index value, measuring a sequence of spectra in-situ during polishing to obtain measured spectra, for each measured spectrum of the sequence of spectra, finding a best matching reference spectrum to generate a sequence of best matching reference spectra, determining the associated index value for each best matching spectrum from the sequence of best matching reference spectra to generate a sequence of index values, fitting a linear function to the sequence of index values, and halting the polishing either when the linear function matches or exceeds a target index or when the associated index value from the determining step matches or exceeds the target index.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Harry Q. Lee, Boguslaw A. Swedek, Lakshmanan Karuppiah