Patents by Inventor Dominic J. Benvegnu

Dominic J. Benvegnu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140011429
    Abstract: A polishing apparatus includes a platen to hold a polishing pad having a plurality of optical apertures, a carrier head to hold a substrate against the polishing pad, a motor to generate relative motion between the carrier head and the platen, and an optical monitoring system. The optical monitoring system includes at least one light source, a common detector, and an optical assembly configured to direct light from the at least one light source to each of a plurality of separated positions in the platen, to direct light from each position of the plurality of separated positions to the substrate as the substrate passes over said each position, to receive reflected light from the substrate as the substrate passes over said each position, and to direct the reflected light from each of the plurality of separated positions to the common detector.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu, Sivakumar Dhandapani
  • Publication number: 20130344625
    Abstract: Methods and apparatus for spectrum-based endpointing. An endpointing method includes selecting a reference spectrum. The reference spectrum is a spectrum of white light reflected from a film of interest on a first substrate and has a thickness greater than a target thickness. The reference spectrum is empirically selected for particular spectrum-based endpoint determination logic so that the target thickness is achieved when endpoint is called by applying the particular spectrum-based endpoint logic. The method includes obtaining a current spectrum. The current spectrum is a spectrum of white light reflected from a film of interest on a second substrate when the film of interest is being subjected to a polishing step and has a current thickness that is greater than the target thickness. The method includes determining, for the second substrate, when an endpoint of the polishing step has been achieved. The determining is based on the reference and current spectra.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jeffrey Drue David, Boguslaw A. Swedek
  • Patent number: 8591698
    Abstract: A polishing system receives one or more target parameters for a selected peak in a spectrum of light, polishes a substrate, measures a current spectrum of light reflected from the substrate while the substrate is being polished, identifies the selected peak in the current spectrum, measures one or more current parameters of the selected peak in the current spectrum, compares the current parameters of the selected peak to the target parameters, and ceases to polish the substrate when the current parameters and the target parameters have a pre defined relationship.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, David J. Lischka
  • Publication number: 20130309951
    Abstract: A polishing pad is described that has a polishing layer with a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The window has a top surface coplanar with the polishing surface and a bottom surface coplanar with a lower surface of the adhesive layer. A method of making a polishing pad includes forming an aperture through a polishing layer and an adhesive layer, securing a backing piece to the adhesive layer on a side opposite a polishing surface of the polishing layer, dispensing a liquid polymer into the aperture, and curing the liquid polymer to form a window.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jimin Zhang, Thomas H. Osterheld, Boguslaw A. Swedek
  • Patent number: 8585790
    Abstract: A window of solid light-transmissive polymer is formed in a polishing pad, and at least one surface of the window is treated to increase the smoothness of the at least one surface. Treating the surface of the window can include heating the at least one surface and pressing with a solid rigid part.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A Swedek, Dominic J Benvegnu
  • Patent number: 8579675
    Abstract: A method includes polishing a substrate on a first platen using a first set of parameters, obtaining a plurality of measured spectra from at least two zones, comparing the plurality of measured spectra with a reference spectrum to evaluate the thickness of each of the at least two zones of the substrate, comparing a thickness of a first zone with a thickness of a second zone, determining whether the thickness of the first zone falls within a predetermined range of the thickness of the second zone, and if the thickness does not fall within the predetermined range, at least one of a) adjusting at least one parameter of the first set and polishing a second substrate on the first platen using the adjusted parameters, or b) adjusting at least one parameter of a second set and polishing the substrate on a second platen using the adjusted parameters.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Harry Q. Lee, Boguslaw A. Swedek, Dominic J. Benvegnu, Zhize Zhu, Wen-Chiang Tu
  • Publication number: 20130288572
    Abstract: A method of controlling polishing includes polishing a substrate, during polishing monitoring the substrate with an in-situ monitoring system, the monitoring including generating a signal from a sensor, and filtering the signal to generate a filtered signal. The signal includes a sequence of measured values, and the filtered signal including a sequence of adjusted values. The filtering includes for each adjusted value in the sequence of adjusted values, generating at least one predicted value from the sequence of measured values using linear prediction, and calculating the adjusted value from the sequence of measured values and the predicted value. At least one of a polishing endpoint or an adjustment for a polishing rate is determined from the filtered signal.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Dominic J. Benvegnu
  • Patent number: 8569174
    Abstract: Methods of determining a polishing endpoint are described using spectra obtained during a polishing sequence. In particular, techniques for using only desired spectra, faster searching methods and more robust rate determination methods are described.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Harry Q. Lee, Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David
  • Publication number: 20130280827
    Abstract: A method of controlling a polishing operation includes polishing a substrate, during polishing obtaining a sequence over time of measured spectra from the substrate with an in-situ optical monitoring system, for each measured spectrum from the sequence of measured spectra applying a Fourier transform to the measured spectrum to generate a transformed spectrum thus generating a sequence of transformed spectra, for each transformed spectrum identifying a peak of interest from a plurality of peaks in the transformed spectrum, for each transformed spectrum determining a position value for the peak of interest in the transformed spectrum thus generating a sequence of position values, and determining at least one of a polishing endpoint or an adjustment of a pressure to the substrate from the sequence of position values.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek
  • Publication number: 20130280989
    Abstract: A method of controlling polishing includes receiving user input through a graphical user interface selecting a function, the function including at least one parameter that can be varied, polishing a substrate, monitoring a substrate during polishing with an in-situ monitoring system, generating a sequence of values from measurements from the in-situ monitoring system, fitting the function to the sequence of values, the fitting including determining a value of the at least one parameter that provides a best fit of the function to the sequence of values, determining a projected time at which the function equals a target value, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the projected time.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Inventors: Harry Q. Lee, Jeffrey Drue David, Dominic J. Benvegnu, Boguslaw A. Swedek
  • Patent number: 8563335
    Abstract: A method of controlling a polishing operation includes polishing a substrate, during polishing obtaining a sequence over time of measured spectra from the substrate with an in-situ optical monitoring system, for each measured spectrum from the sequence of measured spectra applying a Fourier transform to the measured spectrum to generate a transformed spectrum thus generating a sequence of transformed spectra, for each transformed spectrum identifying a peak of interest from a plurality of peaks in the transformed spectrum, for each transformed spectrum determining a position value for the peak of interest in the transformed spectrum thus generating a sequence of position values, and determining at least one of a polishing endpoint or an adjustment of a pressure to the substrate from the sequence of position values.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek
  • Patent number: 8562389
    Abstract: A polishing pad is described that has a polishing layer with a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The window has a top surface coplanar with the polishing surface and a bottom surface coplanar with a lower surface of the adhesive layer. A method of making a polishing pad includes forming an aperture through a polishing layer and an adhesive layer, securing a backing piece to the adhesive layer on a side opposite a polishing surface of the polishing layer, dispensing a liquid polymer into the aperture, and curing the liquid polymer to form a window.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jimin Zhang, Thomas H. Osterheld, Boguslaw A. Swedek
  • Patent number: 8554351
    Abstract: Methods, systems, and apparatus for spectrographic monitoring of a substrate during chemical mechanical polishing are described. In one aspect, a computer-implemented method includes storing a library having a plurality of reference spectra, each reference spectrum of the plurality of reference spectra having a stored associated index value, measuring a sequence of spectra in-situ during polishing to obtain measured spectra, for each measured spectrum of the sequence of spectra, finding a best matching reference spectrum to generate a sequence of best matching reference spectra, determining the associated index value for each best matching spectrum from the sequence of best matching reference spectra to generate a sequence of index values, fitting a linear function to the sequence of index values, and halting the polishing either when the linear function matches or exceeds a target index or when the associated index value from the determining step matches or exceeds the target index.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Harry Q. Lee, Boguslaw A. Swedek, Lakshmanan Karuppiah
  • Patent number: 8535115
    Abstract: A polishing apparatus includes a platen to hold a polishing pad having a plurality of optical apertures, a carrier head to hold a substrate against the polishing pad, a motor to generate relative motion between the carrier head and the platen, and an optical monitoring system. The optical monitoring system includes at least one light source, a common detector, and an optical assembly configured to direct light from the at least one light source to each of a plurality of separated positions in the platen, to direct light from each position of the plurality of separated positions to the substrate as the substrate passes over said each position, to receive reflected light from the substrate as the substrate passes over said each position, and to direct the reflected light from each of the plurality of separated positions to the common detector.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Dominic J. Benvegnu, Sivakumar Dhandapani
  • Publication number: 20130237128
    Abstract: A method of controlling a polishing operation includes polishing a first layer of a substrate, during polishing, obtaining a sequence over time of measured spectra with an in-situ optical monitoring system, for each measured spectrum from the sequence of measured spectra, fitting an optical model to the measured spectrum, the fitting including finding parameters that provide a minimum difference between an output spectrum of the optical model and the measured spectrum, the parameters including an endpoint parameter and at least one non-endpoint parameter, the fitting generating a sequence of fitted endpoint parameter values, each endpoint parameter value of the sequence associated with one of the spectra of the sequence of measured spectra, and determining at least one of a polishing endpoint or an adjustment of a pressure to the substrate from the sequence of fitted endpoint parameter values.
    Type: Application
    Filed: February 21, 2013
    Publication date: September 12, 2013
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu
  • Patent number: 8518827
    Abstract: Methods and apparatus for spectrum-based endpointing. An endpointing method includes selecting a reference spectrum. The reference spectrum is a spectrum of white light reflected from a film of interest on a first substrate and has a thickness greater than a target thickness. The reference spectrum is empirically selected for particular spectrum-based endpoint determination logic so that the target thickness is achieved when endpoint is called by applying the particular spectrum-based endpoint logic. The method includes obtaining a current spectrum. The current spectrum is a spectrum of white light reflected from a film of interest on a second substrate when the film of interest is being subjected to a polishing step and has a current thickness that is greater than the target thickness. The method includes determining, for the second substrate, when an endpoint of the polishing step has been achieved. The determining is based on the reference and current spectra.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: August 27, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Jeffrey Drue David, Boguslaw A. Swedek
  • Publication number: 20130204424
    Abstract: A computer-implemented method includes receiving a sequence of current spectra of reflected light from a substrate; comparing each current spectrum from the sequence of current spectra to a plurality of reference spectra from a reference spectra library to generate a sequence of best-match reference spectra; determining a goodness of fit for the sequence of best-match reference spectra; and determining at least one of whether to adjust a polishing rate or an adjustment for the polishing rate, based on the goodness of fit.
    Type: Application
    Filed: December 21, 2012
    Publication date: August 8, 2013
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Harry Q. Lee, Boguslaw A. Swedek
  • Publication number: 20130167614
    Abstract: A system method and apparatus to monitor a frictional coefficient of a substrate undergoing polishing is described. A polishing pad assembly includes a polishing layer including a polishing surface, and a substrate contacting member flexibly coupled to the polishing layer having a top surface to contact an exposed surface of a substrate. At least a portion of the top surface is substantially coplanar with the polishing surface. A sensor is provided to measure a lateral displacement of the substrate contacting member. Some embodiments may provide accurate endpoint detection during chemical mechanical polishing to indicate the exposure of an underlying layer.
    Type: Application
    Filed: December 13, 2012
    Publication date: July 4, 2013
    Inventors: Gabriel Lorimer Miller, Manoocher Birang, Nils Johansson, Boguslaw A. Swedek, Dominic J. Benvegnu
  • Patent number: 8475228
    Abstract: A polishing pad has an opaque polishing layer with an aperture therethrough and a polishing surface, and a solid light-transmissive window in the aperture. The solid light-transmissive window includes an outer portion secured to the polishing layer and an inner portion secured to the outer portion. The outer portion has a upper surface recessed relative to the polishing surface, whereas the inner portion has an upper surface that is substantially co-planar with the polishing surface.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Boguslaw A. Swedek, Jimin Zhang
  • Patent number: 8393933
    Abstract: A polishing system includes a polishing pad having a solid light-transmissive window, an optical fiber having an end, and a spacer having a vertical aperture therethrough. A bottom surface of the spacer contacts the end of the optical fiber, a top surface of the spacer contacts the underside of the window, and the vertical aperture is aligned with the optical fiber.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jun Qian, Dominic J. Benvegnu, Ningzhuo Cui, Boguslaw A. Swedek, Thomas H. Osterheld