Patents by Inventor Dominic Timothy Shiosaki

Dominic Timothy Shiosaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170274982
    Abstract: Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position and/or configuration of one or more propeller blades of a propulsion mechanism to generate different sounds and/or lifting forces from the propulsion mechanism.
    Type: Application
    Filed: June 27, 2016
    Publication date: September 28, 2017
    Inventors: Brian C. Beckman, John Raymond Brodie, Vedran Coralic, Taylor David Grenier, Gur Kimchi, Dominic Timothy Shiosaki, Ricky Dean Welsh, Richard Philip Whitlock
  • Publication number: 20170274993
    Abstract: Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position and/or configuration of one or more propeller blades of a propulsion mechanism to generate different sounds and/or lifting forces from the propulsion mechanism.
    Type: Application
    Filed: June 27, 2016
    Publication date: September 28, 2017
    Inventors: Brian C. Beckman, John Raymond Brodie, Vedran Coralic, Taylor David Grenier, Gur Kimchi, Dominic Timothy Shiosaki, Ricky Dean Welsh, Richard Philip Whitlock
  • Publication number: 20170274991
    Abstract: Aerial vehicles may include propulsion units having motors with drive shafts that may be aligned at a variety of orientations, propellers with variable pitch blades, and common operators for aligning the drive shafts at one or more orientations and for varying the pitch angles of the blades. The common operators may include plate elements to which a propeller hub is rotatably joined, and which may be supported by one or more linear actuators that may extend or retract to vary both the orientations of the drive shafts and the pitch angles of the blades. Operating the motors and propellers at varying speeds, gimbal angles or pitch angles enables the motors to generate forces in any number of directions and at any magnitudes. Attributes of the propulsion units may be selected in order to shape or control the noise generated thereby.
    Type: Application
    Filed: March 28, 2016
    Publication date: September 28, 2017
    Inventors: Dominic Timothy Shiosaki, Ricky Dean Welsh
  • Publication number: 20170274978
    Abstract: Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position and/or configuration of one or more propeller blades of a propulsion mechanism to generate different sounds and/or lifting forces from the propulsion mechanism.
    Type: Application
    Filed: June 27, 2016
    Publication date: September 28, 2017
    Inventors: Brian C. Beckman, John Raymond Brodie, Vedran Coralic, Taylor David Grenier, Gur Kimchi, Dominic Timothy Shiosaki, Ricky Dean Welsh, Richard Philip Whitlock
  • Publication number: 20170174337
    Abstract: Multiple motors may drive (rotate) a single shaft coupled to a propeller. The motors may be selected such that a first motor is capable of rotating the drive shaft in an event of a failure of a second motor coupled to the drive shaft. A one-way clutch bearing, or similar device, may interface between a motor and the drive shaft to enable free rotation of the drive shaft in an event of the motor becoming inoperable, such as the motor freezing or locking in a position due to failure caused by overheating or caused by other conditions or events. Use of the second motor may secure a position of the drive shaft which may support the propeller in radial eccentric loading.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Nicholas Hampel Roberts, Dominic Timothy Shiosaki, Ricky Dean Welsh
  • Publication number: 20170174323
    Abstract: Multiple propeller blades may be joined by tip connectors to form a closed propeller apparatus. The tip connectors may create continuous structure between adjacent tips of a first propeller and a second propeller. Use of the tip connectors may reduce vortices created near the tips of the propeller blades, which cause drag and slow the rotation of the propeller blades. The tip connectors may also reduce noise caused by rotation of propeller blades. Further, the tip connectors reduce or eliminate deflection of the propeller blades by creating a support structure to counteract forces that would otherwise cause deflection of the propeller blades, thereby improving propeller blade loading. In some embodiments, the tip connectors may be formed of a malleable material and/or include one or more joints that enable at least one of the propellers to modify a pitch of blades of the propeller.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Nicholas Hampel Roberts, Dominic Timothy Shiosaki, Ricky Dean Welsh
  • Publication number: 20170166302
    Abstract: Aerial vehicles may be equipped with propellers having clutch mechanisms that contract around a shaft when the propellers are not rotating, or are rotating at low angular velocities, and expand around the shaft when the propellers are rotating at sufficiently high angular velocities. The clutch mechanisms may receive one or more fixed posts within an opening or window defined therein. When the clutch mechanisms contract into a closed position, components of the clutch mechanisms come into contact with the posts, and the propellers are forced to remain in an alignment defined by the posts. When the clutch mechanisms expand into an open position, such components may rotate freely without contacting the posts. Thus, a clutch mechanism may cause a propeller to remain aligned in a desired orientation when the propeller is not required for operation, thereby reducing drag or adverse acoustic effects.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventor: Dominic Timothy Shiosaki
  • Patent number: 9663236
    Abstract: Aerial vehicles may include propulsion units having motors with drive shafts that may be aligned at a variety of orientations, propellers with variable pitch blades, and common operators for aligning the drive shafts at one or more orientations and for varying the pitch angles of the blades. The common operators may include plate elements to which a propeller hub is rotatably joined, and which may be supported by one or more linear actuators that may extend or retract to vary both the orientations of the drive shafts and the pitch angles of the blades. Operating the motors and propellers at varying speeds, gimbal angles or pitch angles enables the motors to generate forces in any number of directions and at any magnitudes. Attributes of the propulsion units may be selected in order to shape or control the noise generated thereby.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: May 30, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Dominic Timothy Shiosaki, Ricky Dean Welsh