Patents by Inventor Donald L. Wise

Donald L. Wise has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7077866
    Abstract: A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25–100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: July 18, 2006
    Assignee: DePuy Mitek, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert S. Langer, Kai-Uwe Lewandrowski, Alexander M. Klibanov, Donald L. Wise
  • Patent number: 6913760
    Abstract: The invention provides a drug delivery compositions and methods for treating pain. A drug delivery composition contains a polymer and at least two drugs sucha as an analgesic agent and an anesthetic agent.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: July 5, 2005
    Assignee: New England Medical Hospitals, Inc.
    Inventors: Daniel B. Carr, Andrzej W. Lipkowski, Donald L. Wise, Vasif Hasirci
  • Patent number: 6899107
    Abstract: A method by which immune responses to cortical bone grafts and other substrates (e.g., cement, IPN, etc.) can be minimized and at the same time graft osteoinductive potential can be improved, and improved graft substrate materials are disclosed. The method of the invention provides new types of bone grafts that incorporate into host bone more thoroughly and more rapidly, eliminating long-term complications, such as fracture, non-union, infection, and rejection. In the method of the invention, bone grafts or other substrates are modified to have an osteoinductive surface modification that the recipient's body will accept as its own tissue type and therefore will not reject or otherwise cause to fail. The osteoinductive surface modification comprises a biopolymer matrix coating that is seeded with periosteal cells that have been previously harvested either from the graft recipient or from an allogenic or xenogenic donor source.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: May 31, 2005
    Assignee: Cambridge Scientific, Inc.
    Inventors: Kai-Uwe Lewandrowski, Shrikar Bondre, Debra J. Trantolo, Maurice V. Cattaneo, Joseph D. Gresser, Donald L. Wise
  • Publication number: 20040013688
    Abstract: A bioadhesive mucosal delivery system is used in concert with systemic immunization to develop long-lasting immune responses correlative to protective immunity, especially for the prevention of infection with malaria, tularemia, anthrax, and H. pylori. First, the method provides controlled delivery of protective antigens, such as ODNs, to a mucosal site resulting in “priming” of mucosal receptors. Second, the method augments this mucosal prime with parenteral stimulation. In another embodiment, an intranasal vaccine is used in the treatment of tularemia and other bacterial and viral inhalation antigens. The use of CpG motifs in bacterial DNA allows for the activation of the innate immune response that is characterized by the production of immunostimulatory cytokines and polyreactive antibodies. The rapid response system limits the spread of the pathogen prior to specific immunity activation.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 22, 2004
    Applicant: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Debra J. Trantolo, David D. Hile, Stephen A. Doherty
  • Publication number: 20030180344
    Abstract: Bioresorbable osteoconductive compositions and methods of using the composition as a scaffold for bone repair in periodontal, alveolar or maxillary regeneration, bony cranial defects, and spinal regeneration are disclosed. The bioresorbable compositions contain a bioresorbable polymer, a micro or nano particulate filler and a pore creating substance. The bioresorbable polymer can be electronically unsaturated and cross-linkable with a cross-linking agent. The micro or nano filler can be any natural biocompatible material such as a metals, calcium carbonate, carbon, a biocompatible synthetic material, or a bioceramics such as hydroxyapatite. The pore creating substance can be an effervescent agent such as a carbonate and an acid.
    Type: Application
    Filed: February 5, 2003
    Publication date: September 25, 2003
    Applicant: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Debra J. Trantolo, Kai-Uwe Lewandrowski, Joseph D. Gresser
  • Publication number: 20030170288
    Abstract: The invention provides a drug delivery compositions and methods for treating pain. A drug delivery composition contains a polymer and at least two drugs sucha as an analgesic agent and an anesthetic agent.
    Type: Application
    Filed: August 6, 2002
    Publication date: September 11, 2003
    Inventors: Daniel B. Carr, Andrzej W. Lipkowski, Donald L. Wise, Vasif Hasirci
  • Publication number: 20030109934
    Abstract: A method by which immune responses to cortical bone grafts and other substrates (e.g., cement, IPN, etc.) can be minimized and at the same time graft osteoinductive potential can be improved, and improved graft substrate materials are disclosed. The method of the invention provides new types of bone grafts that incorporate into host bone more thoroughly and more rapidly, eliminating long-term complications, such as fracture, non-union, infection, and rejection. In the method of the invention, bone grafts or other substrates are modified to have an osteoinductive surface modification that the recipient's body will accept as its own tissue type and therefore will not reject or otherwise cause to fail. The osteoinductive surface modification comprises a biopolymer matrix coating that is seeded with periosteal cells that have been previously harvested either from the graft recipient or from an allogenic or xenogenic donor source.
    Type: Application
    Filed: December 27, 2002
    Publication date: June 12, 2003
    Applicant: Cambridge Scientific, Inc.
    Inventors: Kai-Uwe Lewandrowski, Shrikar Bondre, Debra J. Trantolo, Maurice V. Cattaneo, Joseph D. Gresser, Donald L. Wise
  • Patent number: 6551355
    Abstract: A method by which immune responses to cortical bone grafts and other substrates (e.g., cement, IPN, etc.) can be minimized and at the same time graft osteoinductive potential can be improved, and improved graft substrate materials are disclosed. The method of the invention provides new types of bone grafts that incorporate into host bone more thoroughly and more rapidly, eliminating long-term complications, such as fracture, non-union, infection, and rejection. In the method of the invention, bone grafts or other substrates are modified to have an osteoinductive surface modification that the recipient's body will accept as its own tissue type and therefore will not reject or otherwise cause to fail. The osteoinductive surface modification comprises a biopolymer matrix coating that is seeded with periosteal cells that have been previously harvested either from the graft recipient or from an allogenic or xenogenic donor source.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: April 22, 2003
    Assignee: Cambridge Scientific, Inc.
    Inventors: Kai-Uwe Lewandrowski, Shrikar Bondre, Debra J. Trantolo, Maurice V. Cattaneo, Joseph D. Gresser, Donald L. Wise
  • Patent number: 6548002
    Abstract: A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25-100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 15, 2003
    Assignee: Cambridge Scientific, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert S. Langer, Kai-Uwe Lewandrowski, Alexander M. Klibanov, Donald L. Wise
  • Patent number: 6486232
    Abstract: A bioerodible polymeric material, and in particular a semi-interpenetrating network (“semi-IPN”) alloy, is disclosed. A beneficial end use of this material is in the form of internal fixation devices (IFDs) (such as bone supports, plates, and pins) and as cured bone cements for bone repair. A multi-part bioerodible cement system, which, upon mixing of the system parts, forms a cured bioerodible cement, includes, in one part, a first bioerodible polymer (e.g., PLGA) capable of producing acidic products upon hydrolytic degradation, and, in another part, a second bioerodible scaffolding polymer (e.g., PPF) which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for the cured cement.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 26, 2002
    Assignee: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Joseph D. Gresser, Debra J. Trantolo, Yung-Yueh Hsu
  • Patent number: 6419945
    Abstract: An internal fixation device and a bioerodible implantable material useful therefor comprise a bioerodible polymer that produces acidic products or low molecular weight resorbable fragments upon hydrolytic degradation, and a buffering or neutralizing agent in sufficiently high concentration to moderate the rate of change of pH of said bioerodible material during bioerosion. The buffering or neutralizing agent acts to reduce the inflammatory foreign body response generated by the acidic products and reduces the sterile abscess condition that occurs at the site of the bioerodible implant materials of the prior art. Internal fixation devices (IFDs) according to the invention are useful, for example, for the repair, replacement or reconstruction of damaged bone in any area of the body.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: July 16, 2002
    Assignee: Cambridge Scientific, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert Langer, Alexander M. Klibanov, Donald L. Wise
  • Publication number: 20010039453
    Abstract: A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25-100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material.
    Type: Application
    Filed: July 13, 2001
    Publication date: November 8, 2001
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert S. Langer, Kai-Uwe Lewandrowski, Alexander M. Klibanov, Donald L. Wise
  • Publication number: 20010008980
    Abstract: A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25-100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material.
    Type: Application
    Filed: February 16, 2001
    Publication date: July 19, 2001
    Applicant: CAMBRIDGE SCIENTIFIC, INC.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert S. Langer, Kai-Uwe Lewandrowski, Alexander M. Klibanov, Donald L. Wise
  • Patent number: 6241771
    Abstract: A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25-100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: June 5, 2001
    Assignee: Cambridge Scientific, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert S. Langer, Kai-Uwe Lewandrowski, Alexander M. Klibanov, Donald L. Wise
  • Patent number: 6153664
    Abstract: A bioerodible cement system, which, upon mixing of the system parts, forms a cured bioerodible cement, said system comprising a first part comprising a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; and a second part comprising a second bioerodible scaffolding polymer which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for said cured cement is disclosed. In a preferred embodiment, the second bioerodible polymer comprises polypropylene fumarate (PPF), which is cross-linked during curing, desirably by a vinyl monomer such as vinyl pyrrolidone (VP) to form the biopolymeric scaffolding which provides the cured cement with dimensional and geometric stability.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: November 28, 2000
    Assignee: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Joseph D. Gresser, Debra J. Trantolo, Y. Y. Hsu
  • Patent number: 6143534
    Abstract: Lignite is treated with ligninase source to enhance its reactivity. In one embodiment, lignite is gasified in a subterranean reactor by simultaneous digestion by anaerobic ligninase producers, such as termite microflora, and acid formers and methanogens. In another embodiment, the lignite is treated with ligninase prior to digestion by the acid formers and methanogens. If desired, the lignite may be pretreated by alkaline hydrolysis.
    Type: Grant
    Filed: December 24, 1991
    Date of Patent: November 7, 2000
    Assignee: Reliant Energy Incorporated
    Inventors: William M. Menger, Ernest E. Kern, O. C. Karkalits, Donald L. Wise, Alfred P. Leuschner, David Odelson, Hans E. Grethlein
  • Patent number: 6071982
    Abstract: A bioerodible polymeric semi-IPN alloy which comprises a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; a second bioerodible polymer, which provides a biopolymeric scaffolding or internal reinforcement; and optionally a buffering compound that buffers the acidic products within a desired pH range. In a preferred embodiment, the second bioerodible polymer comprises polypropylene fumarate (PPF), which is cross-linked, desirably by a vinyl monomer such as vinyl pyrrolidone (VP) to form the biopolymeric scaffolding which provides the semi-IPN with dimensional and geometric stability.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: June 6, 2000
    Assignee: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Joseph D. Gresser, Debra J. Trantolo, Yung-Yueh Hsu
  • Patent number: 5817328
    Abstract: A bioerodible implantable material, comprising a bioerodible polymer that produces acidic products upon hydrolytic degradation, and a buffering compound that buffers the acidic products and maintains the local pH within a desired range. The buffer compound acts to reduce the inflammatory foreign body response generated by the acidic products and reduces the sterile abscess condition that occurs at the site of the bioerodible implant materials of the prior art. Materials made according to the invention may be used for internal fixation devices (IFDs) for bone repair.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: October 6, 1998
    Assignee: Cambridge Scientific, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Robert Langer, Alexander M. Klibanov, Donald L. Wise
  • Patent number: 5512218
    Abstract: A biopolymer film and other materials that exhibit nonlinear optical (NLO) properties and a method for making this film. Alignment of biopolymer molecules, which is required for NLO phenomena, is achieved by application of an electric field parallel to the surface of a biopolymer solution as the film is formed. In one embodiment, a solution of poly(.gamma.-benzyl-L-glutamate), PBLG, in methylene chloride is employed. Upon application of an electric field, laminar structures perpendicular to both the field direction and to the film surface are formed. These ordered structures are captured in the film upon evaporation of the biopolymer solvent.
    Type: Grant
    Filed: March 24, 1994
    Date of Patent: April 30, 1996
    Assignee: Cambridge Scientific, Inc.
    Inventors: Joseph D. Gresser, Debra J. Trantolo, Donald L. Wise, Gary E. Wnek
  • Patent number: 5456917
    Abstract: A method for making an implantable bioerodible material for the sustained release of a medicament and the material made from the method. The method comprises the formulation of a biomaterial polymeric carrier into particles of predetermined density and size. The particles are then are mixed with the desired medicament and extruded into the desired shape for implantation or reground to a predetermined size distribution for injection as a suspension. In an alternative embodiment, the particles of polymeric carrier are immersed in a solvent containing a medicament, and the pores of the particles are filled with medicament through alternate application and release of vacuum.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: October 10, 1995
    Assignee: Cambridge Scientific, Inc.
    Inventors: Donald L. Wise, Debra J. Trantolo, Joseph D. Gresser