Patents by Inventor Dong Gui

Dong Gui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200379182
    Abstract: The precision TFF POSA is formed by pressing a TFF glass rod array into a top surface of a master glass block to flatten the otherwise curved TFFs formed using conventional TFF deposition processes on glass. The TFF glass rod array is secured to the master glass block with a securing material to form a fabrication structure, which is singulated to form precision TFF POSAs having TFF members with flat TFFs and long TFF member long axes. A fiber interface device is arranged at a back surface of the TFF POSA. Other fiber interface devices having device axes are arranged proximate the TFF members. The device axes are parallel to the TFF member long axes to form a WDM system with a parallel configuration. In this configuration, there is one positionally adjustable fiber interface device for each wavelength channel, which allows for optimizing WDM optical communication in Mux and DeMux directions.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Dong Gui, Qijun Xiao
  • Patent number: 10852482
    Abstract: The precision TFF POSA is formed by pressing a TFF glass rod array into a top surface of a master glass block to flatten the otherwise curved TFFs formed using conventional TFF deposition processes on glass. The TFF glass rod array is secured to the master glass block with a securing material to form a fabrication structure, which is singulated to form precision TFF POSAs having TFF members with flat TFFs and long TFF member long axes. A fiber interface device is arranged at a back surface of the TFF POSA. Other fiber interface devices having device axes are arranged proximate the TFF members. The device axes are parallel to the TFF member long axes to form a WDM system with a parallel configuration. In this configuration, there is one positionally adjustable fiber interface device for each wavelength channel, which allows for optimizing WDM optical communication in Mux and DeMux directions.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 1, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui, Qijun Xiao
  • Publication number: 20200340807
    Abstract: Embodiments disclosed herein relate generally to methods for measuring a characteristic of a substrate. In an embodiment, the method includes scanning over the substrate with a scanning probe microscope, the substrate having fins thereon, the scanning obtaining images showing respective fin top regions of the fins, the scanning probe microscope interacting with respective portions of sidewalls of the fins by a scanning probe oscillated during the scanning, selecting images obtained at a predetermined depth below the fin top regions to obtain a line edge profile of the fins, by a processor-based system, analyzing the line edge profile of the fins using power spectral density (PSD) method to obtain spatial frequency data of the line edge profile of the fins, and by the processor-based system, calculating line edge roughness of the fins based on the spatial frequency data.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Wei-Shan HU, Dong GUI, Jang Jung LEE, Che-Liang LI, Duen-Huei HOU, Wen-Chung LIU
  • Patent number: 10809480
    Abstract: A fiber optic assembly is provided including a body defining a fiber routing volume, a plurality of fiber optic components disposed in a front side of the body, and a plurality of optical filters disposed within the volume. The plurality of optical filters enable at least twenty four (24) dense wavelength division multiplexing (DWDM) channels.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: October 20, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Terry Dean Cox, Dong Gui, Lingling Hu, Scott William Ramsdell, Diana Rodriguez
  • Patent number: 10746542
    Abstract: Embodiments disclosed herein relate generally to methods for measuring a characteristic of a substrate. In an embodiment, the method includes scanning over the substrate with a scanning probe microscope, the substrate having fins thereon, the scanning obtaining images showing respective fin top regions of the fins, the scanning probe microscope interacting with respective portions of sidewalls of the fins by a scanning probe oscillated during the scanning, selecting images obtained at a predetermined depth below the fin top regions to obtain a line edge profile of the fins, by a processor-based system, analyzing the line edge profile of the fins using power spectral density (PSD) method to obtain spatial frequency data of the line edge profile of the fins, and by the processor-based system, calculating line edge roughness of the fins based on the spatial frequency data.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Shan Hu, Dong Gui, Jang Jung Lee, Che-Liang Li, Duen-Huei Hou, Wen-Chung Liu
  • Patent number: 10715271
    Abstract: A fiber optic system is provided including a first and second fiber optic assembly, each comprising a body defining a fiber routing volume and a plurality of fiber optic components disposed on the body. The first fiber optic assembly includes a first plurality of optical filters disposed within the first fiber routing volume. The first plurality of optical filters define a first plurality of dense wavelength division multiplexing (DWDM) channels, test channels, an express port, and an upgrade port. A second plurality of optical filters disposed within the second fiber routing volume. The second plurality of optical filters define a second group comprising a second plurality of DWDM channels. The test channels and the express port of the first fiber optic assembly are utilized for both the first fiber optic assembly and the second fiber optic assembly.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 14, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Terry Dean Cox, Dong Gui, Lingling Hu, Scott William Ramsdell, Diana Rodriguez
  • Publication number: 20200096332
    Abstract: Embodiments disclosed herein relate generally to methods for measuring a characteristic of a substrate. In an embodiment, the method includes scanning over the substrate with a scanning probe microscope, the substrate having fins thereon, the scanning obtaining images showing respective fin top regions of the fins, the scanning probe microscope interacting with respective portions of sidewalls of the fins by a scanning probe oscillated during the scanning, selecting images obtained at a predetermined depth below the fin top regions to obtain a line edge profile of the fins, by a processor-based system, analyzing the line edge profile of the fins using power spectral density (PSD) method to obtain spatial frequency data of the line edge profile of the fins, and by the processor-based system, calculating line edge roughness of the fins based on the spatial frequency data.
    Type: Application
    Filed: March 22, 2019
    Publication date: March 26, 2020
    Inventors: Wei-Shan Hu, Dong Gui, Jang Jung Lee, Che-Liang Li, Duen-Huei Hou, Wen-Chung Liu
  • Patent number: 10551569
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with multiple collimator sets is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including at least one optical signal router, at least one WDM filter, and a first and second WDM collimator sets. The first WDM collimator set includes a first common optical collimator and at least two channel collimators and the second WDM collimator set includes a second common optical collimator and at least two channel collimators. At least a portion of the first WDM collimator set is optically positioned on a first surface of at least one substrate, and at least a portion of the second WDM collimator set is optically positioned on a second surface of the at least one substrate opposite the first surface. The WDM optical core subassembly increases lane density while decreasing size and minimizing complexity by using a plurality of WDM common ports.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui, Zilong Jiang, Qijun Xiao, Andy Fenglei Zhou
  • Patent number: 10313045
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with increased lane density is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including an optical signal router for routing an optical signal between a first side and a second side of a substrate. The WDM optical core subassembly further includes a first WDM filter having a first passband and a second WDM filter having a second passband. The WDM optical core subassembly forms a first optical path between a first common port, the first WDM filter, and a first channel port, and to form a second optical path between the second WDM filter, a second common port, and a second channel port. The WDM optical core subassembly increases lane density while decreasing size and complexity by including a plurality of common ports in optical communication with the same plurality of WDM filters.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 4, 2019
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Shudong Xiao, Andy Fenglei Zhou, Dong Gui
  • Patent number: 10180544
    Abstract: The micro-optical systems disclosed herein employ a glass tube having a body, a front end, a back end, an outer surface, and a bore that runs through the body between the front and back ends and that has a bore axis. The outer surface has a maximum outer dimension between 0.1 mm and 20 mm and includes at least one flat side. At least one optical element is inserted into and operably disposed and secured within the bore. The micro-optical assemblies are formed by securing one or more micro-optical systems to a substrate at the flat side of the glass tube. The glass tube is formed by a drawing process that allows for the dimensions of the glass tube to be small and formed with relatively high precision. An example of a compact WDM micro-optical assembly that employs micro-collimators is disclosed.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: January 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Douglas Llewellyn Butler, Alan Frank Evans, Dong Gui, Zilong Jiang, Yao Li, James Scott Sutherland
  • Publication number: 20180220208
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with multiple collimator sets is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including at least one optical signal router, at least one WDM filter, and a first and second WDM collimator sets. The first WDM collimator set includes a first common optical collimator and at least two channel collimators and the second WDM collimator set includes a second common optical collimator and at least two channel collimators. At least a portion of the first WDM collimator set is optically positioned on a first surface of at least one substrate, and at least a portion of the second WDM collimator set is optically positioned on a second surface of the at least one substrate opposite the first surface. The WDM optical core subassembly increases lane density while decreasing size and minimizing complexity by using a plurality of WDM common ports.
    Type: Application
    Filed: April 7, 2017
    Publication date: August 2, 2018
    Inventors: Dong Gui, Zilong Jiang, Qijun Xiao, Andy Fenglei Zhou
  • Patent number: 10012796
    Abstract: A multiplexer/demultiplexer is provided comprising a capillary filter block, a capillary adhesive, a signal-routing block, and an index-matching adhesive. The capillary adhesive resides in the capillary interstices of the capillary filter block and the index-matching adhesive forms an optical and mechanical interface between the signal-routing block and the capillary filter block. The layer thickness of the index-matching adhesive accommodates for extra-planar surface irregularities in the bonding face of the signal routing block and extra-planar variations along the proximal ends of the component filter blocks of the capillary filter block. The capillary filter block can be formed from a plurality of component filter blocks by dicing multiple component filter blocks from a filter block substrate, placing the component filter blocks adjacent to one another, and using capillary force to draw adhesive between adjacent sidewalls of component filter blocks.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Dong Gui, Andy Zhou
  • Publication number: 20180136418
    Abstract: The micro-optical systems disclosed herein employ a glass tube having a body, a front end, a back end, an outer surface, and a bore that runs through the body between the front and back ends and that has a bore axis. The outer surface has a maximum outer dimension between 0.1 mm and 20 mm and includes at least one flat side. At least one optical element is inserted into and operably disposed and secured within the bore. The micro-optical assemblies are formed by securing one or more micro-optical systems to a substrate at the flat side of the glass tube. The glass tube is formed by a drawing process that allows for the dimensions of the glass tube to be small and formed with relatively high precision. An example of a compact WDM micro-optical assembly that employs micro-collimators is disclosed.
    Type: Application
    Filed: February 2, 2017
    Publication date: May 17, 2018
    Inventors: Douglas Llewellyn Butler, Alan Frank Evans, Dong Gui, Zilong Jiang, Yao Li, James Scott Sutherland
  • Publication number: 20180139520
    Abstract: A wavelength-division multiplexing (WDM) optical assembly with increased lane density is disclosed herein. The WDM optical assembly includes a WDM optical core subassembly including an optical signal router for routing an optical signal between a first side and a second side of a substrate. The WDM optical core subassembly further includes a first WDM filter having a first passband and a second WDM filter having a second passband. The WDM optical core subassembly forms a first optical path between a first common port, the first WDM filter, and a first channel port, and to form a second optical path between the second WDM filter, a second common port, and a second channel port. The WDM optical core subassembly increases lane density while decreasing size and complexity by including a plurality of common ports in optical communication with the same plurality of WDM filters.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 17, 2018
    Inventors: Qijun Xiao, Shudong Xiao, Andy Fenglei Zhou, Dong Gui
  • Patent number: 9843394
    Abstract: An optical transceiver module having unibody structure is disclosed. The unibody structure comprises a single-piece substrate, an optical interface, and an optical engine. The components of the optical interface and the components of the optical engine are directly attached to the single-piece substrate.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: December 12, 2017
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Dong Gui, Andy Fenglei Zhou, Yao Li
  • Publication number: 20170184789
    Abstract: A multiplexer/demultiplexer is provided comprising a capillary filter block, a capillary adhesive, a signal-routing block, and an index-matching adhesive. The capillary adhesive resides in the capillary interstices of the capillary filter block and the index-matching adhesive forms an optical and mechanical interface between the signal-routing block and the capillary filter block. The layer thickness of the index-matching adhesive accommodates for extra-planar surface irregularities in the bonding face of the signal routing block and extra-planar variations along the proximal ends of the component filter blocks of the capillary filter block.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 29, 2017
    Applicant: Alliance Fiber Optic Products, Inc.
    Inventors: Qijun Xiao, Dong Gui, Andy Zhou
  • Publication number: 20160365928
    Abstract: An optical transceiver module having unibody structure is disclosed. The unibody structure comprises a single-piece substrate, an optical interface, and an optical engine. The components of the optical interface and the components of the optical engine are directly attached to the single-piece substrate.
    Type: Application
    Filed: October 5, 2015
    Publication date: December 15, 2016
    Inventors: Qijun Xiao, Dong Gui, Andy Fenglei Zhou, Yao Li
  • Patent number: 9401773
    Abstract: Techniques for designing compact free-space optical device with all input/output ports on one side are disclosed. Instead of folding a fiber, a beam folding means is provided to turn a light beam to significantly reduce the size of the device. In one embodiment, there are a first collimator, a second collimator, and a beam folding means to turn a light beam from the first collimator back to the second collimator by two turns so that a first light path from the first collimator to the beam folding means and a second light path from the second collimator to the beam folding means are parallel. A substrate is provided to which the first and second collimators and filters are boned thereto.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: July 26, 2016
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui, Andy Zhou, Yao Li, Qijun Xiao, Xiaotao Peng
  • Patent number: 9219549
    Abstract: Filters shaped differently from those commonly used in WDM Mux/DeMux optical devices are described. Different from the prior art devices that commonly use filters shaped in cuboid, the filters in the embodiment of the present invention are shaped in parallelepiped. In other words, a cross section of such filter is not in parallelogram. According to one embodiment of the present invention, a filter is so cut that a cross section thereof presents a cutting angle not being 90 degrees. As a result, the filter is fully used in WDM Mux/DeMux optical devices. Such filters are advantageously used in compact optical modules.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: December 22, 2015
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Dong Gui Gui, Yao Li, Qijun Xiao
  • Patent number: 9083044
    Abstract: The present invention provides a method for manufacturing an anode active material for a lithium secondary battery comprising the following steps of: a) simultaneously mixing a first metallic salt aqueous solution including nickel, cobalt, manganese and optionally a transition metal, a chelating agent, and a basic aqueous solution in a reactor, and mixing with a lithium raw material and calcining to manufacture a center part including the compound of following Chemical Formula 1: Lix1[Ni1?y1?z1?w1Coy1Mnz1Mw1]O2??Chemical Formula 1 (wherein, 0.9?x1?1.3, 0.1?y1?0.3, 0.0?z1?0.3, 0?w1?0.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 14, 2015
    Assignee: ECOPRO CO., LTD.
    Inventors: Jik Soo Kim, Moon Ho Choi, Jong Ryeol Yu, Dong Gui Hoi