Patents by Inventor Dong-Gun Moon

Dong-Gun Moon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927722
    Abstract: A transparent article is described herein that includes: a glass-ceramic substrate comprising first and second primary surfaces opposing one another and a crystallinity of at least 40% by weight; and an optical film structure disposed on the first primary surface. The optical film structure comprises a plurality of alternating high refractive index (RI) and low RI layers and a scratch-resistant layer. The article also exhibits an average photopic transmittance of greater than 80% and a maximum hardness of greater than 10 GPa, as measured by a Berkovich Hardness Test over an indentation depth range from about 100 nm to about 500 nm. The glass-ceramic substrate comprises an elastic modulus of greater than 85 GPa and a fracture toughness of greater than 0.8 MPa·?m. Further, the optical film structure exhibits a residual compressive stress of ?700 MPa and an elastic modulus of ?140 GPa.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: March 12, 2024
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Tingge Xu
  • Publication number: 20230359074
    Abstract: A transparent article is described herein that includes: a substrate comprising an opposing first and second primary surface; and an optical film structure disposed on the first primary surface. The optical film structure comprises a scratch-resistant layer, a plurality of alternating high refractive index (RI) and low RI layers, and an outer and inner structure, the scratch-resistant layer disposed between the outer and inner structures. The outer structure can comprise at least one medium RI layer in contact with one of the high RI layers and the scratch-resistant layer. The medium RI layer comprises an RI from 1.55 to 1.80, each of the high RI layers comprises an RI of >1.80, and each of the low RI layers comprises an RI<1.55. A sum of the physical thicknesses of all of the low RI layers in the outer structure can be <200 nm.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 9, 2023
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Alexandre Michel Mayolet, Dong-gun Moon, Jeonghong Oh, Naveen Prakash, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Florence Christine Monique Verrier, Tingge Xu, Binwei Zhang, Wenlei Zhang
  • Publication number: 20230301002
    Abstract: A cover article for a sensor is described herein that includes: a substrate comprising a thickness from 50 ?m to 5000 ?m, an outer primary surface, and an inner primary surface; and an outer layered film disposed on the outer primary surface. The substrate is a chemically-strengthened glass or glass-ceramic substrate. The cover article exhibits a first-surface average reflectance of less than 10% for wavelengths from 1000 nm to 1700 nm for at least one angle of incidence from 8° to 60°.
    Type: Application
    Filed: March 20, 2023
    Publication date: September 21, 2023
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Alexandre Michel Mayolet, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Tingge Xu
  • Publication number: 20230273345
    Abstract: Articles are described that may include substrates having a major surface, the major surface comprising a first portion and a second portion. A first direction that is normal to the first portion of the major surface may not be equal to a second direction that is normal to the second portion of the major surface. The angle between the first direction and the second direction may be at least 15 degrees. An optical coating may be disposed on at least the first portion and the second portion of the major surface. The optical coating may form an antireflective surface.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 31, 2023
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Alexandre Michel Mayolet, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Tingge Xu
  • Publication number: 20230244004
    Abstract: A transparent article is described herein that includes: a glass-ceramic substrate comprising first and second primary surfaces opposing one another and a crystallinity of at least 40% by weight; and an optical film structure disposed on the first primary surface. The optical film structure comprises a plurality of alternating high refractive index (RI) and low RI layers and a scratch-resistant layer. The article also exhibits an average photopic transmittance of greater than 80% and a maximum hardness of greater than 10 GPa, as measured by a Berkovich Hardness Test over an indentation depth range from about 100 nm to about 500 nm. The glass-ceramic substrate comprises an elastic modulus of greater than 85 GPa and a fracture toughness of greater than 0.8 MPa·?m. Further, the optical film structure exhibits a residual compressive stress of ? 700 MPa and an elastic modulus of ?140 GPa.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 3, 2023
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Tingge Xu
  • Publication number: 20220317340
    Abstract: A transparent article is described herein that includes: a glass-ceramic substrate comprising first and second primary surfaces opposing one another and a crystallinity of at least 40% by weight; and an optical film structure disposed on the first primary surface. The optical film structure comprises a plurality of alternating high refractive index (RI) and low RI layers and a scratch-resistant layer. The article also exhibits an average photopic transmittance of greater than 80% and a maximum hardness of greater than 10 GPa, as measured by a Berkovich Hardness Test over an indentation depth range from about 100 nm to about 500 nm. The glass-ceramic substrate comprises an elastic modulus of greater than 85 GPa and a fracture toughness of greater than 0.8 MPa·?m. Further, the optical film structure exhibits a residual compressive stress of ?700 MPa and an elastic modulus of ?140 GPa.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 6, 2022
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ljerka Ukrainczyk, Tingge Xu
  • Patent number: 11338257
    Abstract: A fluid distributor comprises a first conduit extending along a first elongated axis and a second conduit circumscribing the first conduit. A first area comprises a cross-sectional flow area of the first conduit taken perpendicular to the first elongated axis. The first conduit comprises a first plurality of orifices comprising a first combined cross-sectional area. The second conduit comprises a second plurality of orifices comprising a second combined cross-sectional area. A first ratio of the first area to the first combined cross-sectional area can be about 2 or more. A second ratio of the first combined cross-sectional area to the second combined cross-sectional area can be about 2 or more. An angle between a direction of an orifice axis of a first orifice of the first plurality of orifices and a direction of an orifice axis of a first orifice of the second plurality of orifices can be from about 45° to 180°.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 24, 2022
    Assignee: Corning Incorporated
    Inventors: John Alan Langstrand, Dong-gun Moon, Elias Panides, Abhijit Rao, Jung-Hun Yun
  • Publication number: 20200158916
    Abstract: An optical film structure that includes: an optical film comprising a physical thickness from about 50 nm to about 3000 nm, and a silicon-containing nitride or a silicon-containing oxynitride. The optical film exhibits a maximum hardness of greater than 18 GPa, as measured by a Berkovich Indenter Hardness Test over an indentation depth range from about 100 nm to about 500 nm on a hardness stack comprising a test optical film with a physical thickness of about 2 microns disposed on an inorganic oxide test substrate, the test optical film having the same composition as the optical film. Further, the optical film exhibits an optical extinction coefficient (k) of less than 1×10?2 at a wavelength of 400 nm and a refractive index (n) of greater than 1.8 at a wavelength of 550 nm.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jung-keun Oh, Charles Andrew Paulson, James Joseph Price
  • Publication number: 20200139314
    Abstract: A fluid distributor comprises a first conduit extending along a first elongated axis and a second conduit circumscribing the first conduit. A first area comprises a cross-sectional flow area of the first conduit taken perpendicular to the first elongated axis. The first conduit comprises a first plurality of orifices comprising a first combined cross-sectional area. The second conduit comprises a second plurality of orifices comprising a second combined cross-sectional area. A first ratio of the first area to the first combined cross-sectional area can be about 2 or more. A second ratio of the first combined cross-sectional area to the second combined cross-sectional area can be about 2 or more. An angle between a direction of an orifice axis of a first orifice of the first plurality of orifices and a direction of an orifice axis of a first orifice of the second plurality of orifices can be from about 45° to 180°.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Inventors: John Alan Langstrand, Dong-gun Moon, Elias Panides, Abhijit Rao, Jung-Hun Yun
  • Publication number: 20190270670
    Abstract: Methods for coating a glass-based article, for example a cover glass, with a coating layer that is not deposited on the perimeter edge of the glass-based article. The methods may include disposing a mask having an eave over a glass-based article to protect perimeter portions of the glass-based article from coating of the coating layer during a deposition process. The eave may be dimensioned to form a coating layer having non-uniform coating thickness region around the edge of the coating layer that is not visible to the naked eye on the surface of a glass-based article. The methods may be used to make a glass-based article with non-edge-to-edge coating layers.
    Type: Application
    Filed: October 31, 2017
    Publication date: September 5, 2019
    Inventors: Jae-chang Lee, Dong-gun Moon
  • Publication number: 20160087374
    Abstract: A connector and connector system for a vehicle, as well as a method of operating the connector, are provided. The connector includes a connector housing that has slide holes formed at both ends of a receiving surface and extending in the longitudinal direction of the connector housing. A slide bar is mounted slideably in the longitudinal direction of the connector housing, with an end inserted in the slide holes. A lever is mounted at the other end of the slide bar and has one end turnably coupled to the receiving surface of the connector housing. The lever is configured to pivot in a height direction of the connector housing, press the slide bar further into the slide holes and fix a counter connector to the connector housing, when being turned.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 24, 2016
    Inventors: Sung-IL KIM, Sung-Won JEON, Dong-Gun MOON
  • Patent number: 9293860
    Abstract: A connector and connector system for a vehicle, as well as a method of operating the connector, are provided. The connector includes a connector housing that has slide holes formed at both ends of a receiving surface and extending in the longitudinal direction of the connector housing. A slide bar is mounted slideably in the longitudinal direction of the connector housing, with an end inserted in the slide holes. A lever is mounted at the other end of the slide bar and has one end turnably coupled to the receiving surface of the connector housing. The lever is configured to pivot in a height direction of the connector housing, press the slide bar further into the slide holes and fix a counter connector to the connector housing, when being turned.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: March 22, 2016
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, KUM CO., LTD.
    Inventors: Sung-Il Kim, Sung-Won Jeon, Dong-Gun Moon
  • Patent number: 9146408
    Abstract: A thermochromic window that can effectively insulate heat when warming is conducted in winter. The thermochromic window that includes a substrate, a thermochromic thin film formed on the substrate, and a transparent conductive film formed on at least one surface of the upper surface and the undersurface of the thermochromic thin film. The emissivity of the transparent conductive film is lower than the emissivity of the thermochromic thin film.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 29, 2015
    Assignee: Corning Precision Materials Co., Ltd.
    Inventors: Seulgi Bae, Sang-Ryoun Ryu, Chang Gyu Kim, Hyun Bin Kim, Dong-Gun Moon, Young Soo Jung, Yung-Jin Jung, Jee Yun Cha, Yong Won Choi
  • Patent number: 8988758
    Abstract: A thermochromic window doped with a dopant and a method of manufacturing the same. The thermochromic window includes a substrate and a thermochromic thin film formed on the substrate. The thermochromic thin film has a thermochromic material doped with a dopant, the concentration of the dopant gradually decreasing in a depth direction from one surface of the upper surface and the undersurface of the thermochromic thin film. The thermochromic window has a high level of visible light transmittance and high phase change efficiency while having a low phase transition temperature.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Yong Won Choi, Yung-Jin Jung, Dong Gun Moon, Jee Yun Cha
  • Publication number: 20140002886
    Abstract: A thermochromic window doped with a dopant and a method of manufacturing the same. The thermochromic window includes a substrate and a thermochromic thin film formed on the substrate. The thermochromic thin film has a thermochromic material doped with a dopant, the concentration of the dopant gradually decreasing in a depth direction from one surface of the upper surface and the undersurface of the thermochromic thin film. The thermochromic window has a high level of visible light transmittance and high phase change efficiency while having a low phase transition temperature.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 2, 2014
    Inventors: Yong Won Choi, Yung-Jin Jung, Dong Gun Moon, Jee Yun Cha
  • Publication number: 20130335803
    Abstract: A thermochromic window that can effectively insulate heat when warming is conducted in winter. The thermochromic window that includes a substrate, a thermochromic thin film formed on the substrate, and a transparent conductive film formed on at least one surface of the upper surface and the undersurface of the thermochromic thin film. The emissivity of the transparent conductive film is lower than the emissivity of the thermochromic thin film.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Seulgi Bae, Sang-Ryoun Ryu, Chang Gyu Kim, Hyun Bin Kim, Dong-Gun Moon, Young Soo Jung, Yung-Jin Jung, Jee Yun Cha, Yong Won Choi
  • Patent number: 8576473
    Abstract: A smart window including: a thermochromic or thermotropic transmittance controlling layer; and a heater layer for generating heat in response to an external energy source and for supplying the heat to the transmittance controlling layer.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 5, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myun-Gi Shim, Soo-Ho Park, Dong-Gun Moon, Mi-Hyun Lee
  • Patent number: 8559094
    Abstract: A thermochromic smart window and a method of manufacturing the thermochromic smart window including a glass and a thermochromic layer including a vanadium dioxide material formed on the glass. A thermochromic smart window includes a substrate and a thermochromic layer disposed on the substrate, wherein a slope of a graph of a reflectance of the thermochromic layer is at or between 1 and 2%/° C. at a threshold temperature.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Hyun Bae, Myun-Gi Shim, Soo-Ho Park, Dong-Gun Moon, Mi-Hyun Lee
  • Patent number: 8482842
    Abstract: A method of manufacturing a smart panel and a smart panel. A method of manufacturing a smart panel includes spraying a coating solution including a thermochromic material and a silicon oxide on a surface of a transparent substrate, and drying the coating solution to form a coating film on the surface of the substrate. A smart panel is manufactured in accordance with the above-described method.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 9, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myun-Gi Shim, Soo-Ho Park, Dong-Gun Moon, Mi-Hyun Lee
  • Patent number: 8422113
    Abstract: A panel including a thermochromic layer. A panel includes a transparent substrate, a plurality of thermochromic layers on the transparent substrate, and a plurality of dielectric layers stacked with the thermochromic layers. The thermochromic layers may include vanadium oxide, in which a chemical stoichiometric ratio of vanadium to oxygen may be about 1:2 or about 2:5.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-Gun Moon, Myun-Gi Shim, Soo-Ho Park, Mi-Hyun Lee