Patents by Inventor Dong-myung Choi

Dong-myung Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140242453
    Abstract: An electrolyte for a rechargeable lithium battery including a lithium salt, a non-aqueous organic solvent, and an additive, wherein the additive includes a compound represented by Chemical Formula 1 and a rechargeable lithium battery including the same.
    Type: Application
    Filed: January 23, 2014
    Publication date: August 28, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Seung-Tae Lee, Jung-Yi Yu, Woo-Cheol Shin, Sang-Il Han, Sang-Hoon Kim, Byung-Joo Chung, Duck-Hyun Kim, Myung-Hwan Jeong, Tae-Hyun Bae, Mi-Hyun Lee, Eon-Mi Lee, Ha-Rim Lee, Moon-Sung Kim, In-Haeng Cho, E-Rang Cho, Dong-Myung Choi, Vladimir Egorov, Makhmut Khasanov, Pavel Alexandrovich Shatunov, Alexey Tereshchenko, Denis Chernyshov
  • Publication number: 20140220426
    Abstract: A phosphorous containing compound represented by the following Chemical Formula 1, a method of preparing the phosphorous containing compound, an electrolyte for a rechargeable lithium battery including the phosphorous containing compound, and a rechargeable lithium battery including the electrolyte. (R1O)2P(NR2R3).
    Type: Application
    Filed: August 27, 2013
    Publication date: August 7, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Denis Chernyshov, Woo-Cheol Shin, Vladimir Egorov, Pavel Alexandrovich Shatunov, Alexey Tereshchenko, Makhmut Khasanov, Jung-Yi Yu, Sang-IL Han, Sang-Hoon Kim, Duck-Hyun Kim, Myung-Hwan Jeong, Seung-Tae Lee, Tae-Hyun Bae, Mi-Hyun Lee, Eon-Mi Lee, Ha-Rim Lee, Moon-Sung Kim, In-Haeng Cho, E-Rang Cho, Dong-Myung Choi
  • Publication number: 20140210656
    Abstract: A processor and a circuit implementing a continuous-time deglitching technique for a digital-to-analog converter are disclosed. The circuit includes a digital-to-analog converter having a differential current output, an operational amplifier having an inverting input coupled to a first output of the differential current output and a non-inverting input coupled to a second output of the differential current output, and a transistor coupled to the second output and the output of the operational amplifier. The operational amplifier is configured to operate the transistor to adjust the voltage potential of the second output to substantially match the voltage potential of the first output.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: NVIDIA Corporation
    Inventors: Dong-Myung Choi, Anuradha Subbaraman
  • Patent number: 8786478
    Abstract: A processor and a circuit implementing a continuous-time deglitching technique for a digital-to-analog converter are disclosed. The circuit includes a digital-to-analog converter having a differential current output, an operational amplifier having an inverting input coupled to a first output of the differential current output and a non-inverting input coupled to a second output of the differential current output, and a transistor coupled to the second output and the output of the operational amplifier. The operational amplifier is configured to operate the transistor to adjust the voltage potential of the second output to substantially match the voltage potential of the first output.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 22, 2014
    Assignee: NVIDIA Corporation
    Inventors: Dong-Myung Choi, Anuradha Subbaraman
  • Publication number: 20140134479
    Abstract: An electrolyte additive represented by the following Chemical Formula 1, an electrolyte, and a rechargeable lithium battery are disclosed: In Chemical Formula 1, R1 to R3 and L1 to L3 are the same as defined in the detailed description.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 15, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: DUCK-HYUN KIM, WOO-CHEOL SHIN, SANG-IL HAN, SANG-HOON KIM, BYUNG-JOO CHUNG, MYUNG-HWAN JEONG, JUNG-YI YU, JUNG-HYUN NAM, SEUNG-TAE LEE, TAE-HYUN BAE, MI-HYUN LEE, EON-MI LEE, HA-RIM LEE, MOON-SUNG KIM, IN-HAENG CHO, E-RANG CHO, DONG-MYUNG CHOI, VLADIMIR EGOROV, MAKHMUT KHASANOV, PAVEL SHATUNOV, ALEXEY TERESHCHENKO, DENIS CHERNYSHOV
  • Patent number: 7835205
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 16, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Patent number: 7728637
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 1, 2010
    Assignee: Round Rock Research, LLC
    Inventor: Dong Myung Choi
  • Publication number: 20090066379
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Application
    Filed: October 16, 2008
    Publication date: March 12, 2009
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Publication number: 20090039928
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Application
    Filed: October 6, 2008
    Publication date: February 12, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 7489568
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: February 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Patent number: 7447106
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Patent number: 7436231
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: October 14, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 7391243
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 24, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 7382678
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: June 3, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Patent number: 7345515
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 7276945
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 7236028
    Abstract: A delay-locked loop circuit receiving an input clock signal and generating an output clock signal whose delay is locked to the input clock includes a voltage controlled delay line (VCDL), a multiplexer, a phase detection control loop and a phase selection control loop. The VCDL generates a set of multi-phase delayed clock signals. The multiplexer selects one of the delayed clock signals as the output clock signal based on a select signal. The phase detection control loop measures the phase difference between the input and output clock signals and generate a control voltage for driving the VCDL. The phase selection control loop measures the control voltage and generates the select signal based on the control voltage, causing the multiplexer to select a delayed clock signal with increased or decreased amount of phase delay relative to the currently selected delayed clock signal or to hold the currently selected delayed clock signal.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: June 26, 2007
    Assignee: National Semiconductor Corporation
    Inventor: Dong-Myung Choi
  • Patent number: 7149145
    Abstract: A methodology is disclosed that enables the delay stages of an analog delay locked loop (DLL) or phase locked loop (PLL) to be programmed according to the operating condition, which may depend on the frequency of the input reference clock. The resulting optimized delay stages allow for a broad frequency range of operation, fast locking time over a wide range of input clock frequencies, and a lower current consumption at high clock frequencies. Better performance is achieved by allowing the number of analog delay stages active during a given operation to be flexibly set. The deactivation or turning off of unused delay stages conserves power at higher frequencies. The high frequency range of operation is increased by using a flexible number of delay stages for various input clock frequencies. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 12, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kang Yong Kim, Dong Myung Choi
  • Patent number: 7042260
    Abstract: A phase-lock loop generates an output clock signal from an input clock signal. The output clock signal is coupled through a clock tree and is fed back to a phase detector, which compares the phase of the output clock signal to the phase of the input clock signal. The output clock signal is generated by a voltage controlled oscillator having a control input coupled to receive an output from the phase detector, and a frequency multiplier coupled to the output of the voltage controlled oscillator. As a result, the CLKOUT signal generated by the frequency multiplier has a relatively high frequency while the voltage controlled oscillator, by operating at a relatively low frequency, uses relatively little power.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 9, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Dong Myung Choi
  • Patent number: 6542041
    Abstract: A phase locked loop (PLL) and method for stable clock generation in applications of wide band channel clock recovery performs frequency detection and phase detection with respect to an eight to fourteen modulation (EFM) signal and a PLL clock signal, and adjusts the current based on the results of the frequency detection and the phase detection, thereby generating the PLL clock signal synchronized with the EFM signal. The PLL includes a charge pump, a first low-pass filter, a voltage controlled oscillator and a static phase error controller. The charge pump sources or sinks the current in response to the results of the frequency detection and the phase detection and outputs the result of sourcing or sinking the current. The first low-pass filter low-pass filters the signal output from the charge pump and outputs the filtered result as a direct current control voltage.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: April 1, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-myung Choi