Patents by Inventor Donghua Liu

Donghua Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951529
    Abstract: Disclosed is a cartridge-type rivet feeding mechanism of a flow drill screwing device including a rivet box, a magazine for storing rivets from the rivet box, a rivet pulling mechanism including a rivet pulling block, a rivet pulling block guide housing and a linear driving unit connected with the rivet pulling block, a blowing mechanism including a curved connecting tube and a third air inlet, the rivet pulling block is defined with a T-shaped through hole capable of accommodating a rivet and configured for transferring the rivet from the first connecting tube to the second connecting tube. The first air inlet and the second air inlet are both configured for introducing compressed air to push the rivet to move towards the riveter head.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 9, 2024
    Assignee: JEE TECHNOLOGY CO., LTD.
    Inventors: Lei Liu, Zhe Weng, Donghua Tang, Hongjie Liu
  • Publication number: 20240030279
    Abstract: The present disclosure provides a semiconductor structure and a method for forming the semiconductor structure. The method includes: providing a substrate including a device region and a guard ring region surrounding the device region; and forming a power device in the device region and forming a guard ring in the guard ring region, wherein the guard ring is doped with a first dopant ion that is formed by a partial doping process used in a formation of the power device, and a conductivity type of the first dopant ion in the guard ring is different from a device type of the power device. Since the guard ring is formed by the necessary doping process used in forming the power device, additional photomask process and doping process for forming the guard ring is omitted, effectively reducing process steps and process costs.
    Type: Application
    Filed: April 24, 2023
    Publication date: January 25, 2024
    Inventors: Zhengrong CHEN, Wensheng Qian, Sitong Chen, Zhaozhao Xu, Wan Song, Donghua Liu, Leping Wei
  • Publication number: 20220347346
    Abstract: Provided is a method for treating diseases related to cardiac tissue damage or cardiac insufficiency in a subject. The method includes the step of locally applying a mesenchymal stem cell sheet such as an umbilical cord mesenchymal stem cell sheet to the heart of the subject. Also provided are related use and compositions of the mesenchymal stem cell sheet.
    Type: Application
    Filed: January 22, 2021
    Publication date: November 3, 2022
    Inventors: Dehua CHANG, Jianlin MA, Shuang GAO, Juan WANG, Jing WANG, Xin JIN, Shuai LIU, Donghua LIU, Yufei ZHAO, Yang LIU, Yuqin TAN
  • Publication number: 20220264871
    Abstract: A method for cryopreserving cells, a cell cryopreservation solution and a composition are provided. The method includes: providing a suspension for the cells to be cryopreserved in a cell cryopreservation solution; and cryopreserving the suspension. The cell cryopreservation solution includes dimethyl sulfoxide, plasma, citric acid, sodium citrate, potassium dihydrogen phosphate or sodium dihydrogen phosphate, glucose and adenine.
    Type: Application
    Filed: November 23, 2021
    Publication date: August 25, 2022
    Inventors: Donghua LIU, Dehua CHANG, Xuejiao DONG, Shuai LIU, Yufei ZHAO, YANG LIU, Yuandong LIU, Xiaotong YANG
  • Publication number: 20220071755
    Abstract: A transfer device includes a transfer device body, the transfer device body includes a carrying plate and a picking-up plate. The picking-up plate is configured to drive the carrying plate to move, and a first end of the picking-up plate is fixedly connected to a first edge portion of the carrying plate. The carrying plate is configured to pick up and carry an object to be transplanted.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 10, 2022
    Inventors: Yufei Zhao, Dehua Chang, Donghua Liu, Yang Liu, Shuai Liu
  • Patent number: 10419745
    Abstract: A head-mounted display apparatus is disclosed which including a main frame arranged with left and right display screens, left and right eyepieces arranged in correspondence with the left and right display screen. The main frame is further arranged with a diopter and interpupillary distance adjustment mechanism for adjusting a distance between the display screens and the eyepieces and a distance between two eyepieces at each side. The diopter and interpupillary distance adjustment mechanism employs a rotation operation and a sliding operation of a same knob assembly for achieving adjustments of a diopter and an interpupillary distance of the head-mounted display apparatus. That is, not only the operation is easier, but also the product structure is simplified, so that the head-mounted display apparatus has a more compact structure, lighter weight and more comfortable and convenient use.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: September 17, 2019
    Assignee: Shenzhen NED Optics Co., Ltd.
    Inventors: Donghua Liu, Hongpeng Cao, Huajun Peng, Bingtao Xue
  • Publication number: 20180213212
    Abstract: A head-mounted display apparatus is disclosed which including a main frame arranged with left and right display screens, left and right eyepieces arranged in correspondence with the left and right display screen. The main frame is further arranged with a diopter and interpupillary distance adjustment mechanism for adjusting a distance between the display screens and the eyepieces and a distance between two eyepieces at each side. The diopter and interpupillary distance adjustment mechanism employs a rotation operation and a sliding operation of a same knob assembly for achieving adjustments of a diopter and an interpupillary distance of the head-mounted display apparatus. That is, not only the operation is easier, but also the product structure is simplified, so that the head-mounted display apparatus has a more compact structure, lighter weight and more comfortable and convenient use.
    Type: Application
    Filed: September 5, 2016
    Publication date: July 26, 2018
    Inventors: Donghua LIU, Hongpeng CAO, Huajun PENG, Bingtao XUE
  • Patent number: 9997626
    Abstract: An NLDMOS device that includes a drift region, a P well, and a first PTOP layer and a second PTOP layer formed on the drift region, wherein the first PTOP layer has the same lateral size with the second PTOP layer, the first PTOP layer is spaced from the second PTOP layer in the longitudinal direction and located on the bottom of the second PTOP layer, with the depth of the first PTOP layer less than or equal to that of the bottom of the P well. The present invention also discloses a method for manufacturing the NLDMOS device.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: June 12, 2018
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventors: Wenting Duan, Donghua Liu, Wensheng Qian
  • Publication number: 20160351704
    Abstract: An NLDMOS device that includes a drift region, a P well, and a first PTOP layer and a second PTOP layer formed on the drift region, wherein the first PTOP layer has the same lateral size with the second PTOP layer, the first PTOP layer is spaced from the second PTOP layer in the longitudinal direction and located on the bottom of the second PTOP layer, with the depth of the first PTOP layer less than or equal to that of the bottom of the P well. The present invention also discloses a method for manufacturing the NLDMOS device.
    Type: Application
    Filed: December 29, 2015
    Publication date: December 1, 2016
    Applicant: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventors: Wenting Duan, Donghua Liu, Wensheng Qian
  • Patent number: 9484455
    Abstract: An isolation NLDMOS device including: an N well and a P well adjacent to each other on an upper part of a P substrate; on the upper part of the P well are sequentially arranged a first P type heavily doped region, a first field oxide, and a second P type heavily doped region; on the upper part of the N well are arranged a second field oxide and an N type heavily doped region; a gate oxide is between the second P type heavily doped region and the second field oxide; a gate polysilicon sits above the gate oxide and part of the second field oxide; from the first P type heavily doped region, the second P type heavily doped region and the N type heavily doped region are led out each a connecting wire via a respective contact hole.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: November 1, 2016
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian
  • Publication number: 20160233332
    Abstract: An isolation NLDMOS device including: an N well and a P well adjacent to each other on an upper part of a P substrate; on the upper part of the P well are sequentially arranged a first P type heavily doped region, a first field oxide, and a second P type heavily doped region; on the upper part of the N well are arranged a second field oxide and an N type heavily doped region; a gate oxide is between the second P type heavily doped region and the second field oxide; a gate polysilicon sits above the gate oxide and part of the second field oxide; from the first P type heavily doped region, the second P type heavily doped region and the N type heavily doped region are led out each a connecting wire via a respective contact hole.
    Type: Application
    Filed: December 22, 2015
    Publication date: August 11, 2016
    Applicant: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian
  • Patent number: 9012279
    Abstract: A SiGe HBT is disclosed, which includes: a silicon substrate; shallow trench field oxides formed in the silicon substrate; a pseudo buried layer formed at bottom of each shallow trench field oxide; a collector region formed beneath the surface of the silicon substrate, the collector region being sandwiched between the shallow trench field oxides and between the pseudo buried layers; a polysilicon gate formed above each shallow trench field oxide having a thickness of greater than 150 nm; a base region on the polysilicon gates and the collector region; emitter region isolation oxides on the base region; and an emitter region on the emitter region isolation oxides and a part of the base region. The polysilicon gate is formed by gate polysilicon process of a MOSFET in a CMOS process. A method of manufacturing the SiGe HBT is also disclosed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 21, 2015
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
  • Patent number: 8866189
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, including: a substrate; two field oxide regions formed in the substrate; two pseudo buried layers, each being formed under a corresponding one of the field oxide regions; a collector region formed between the field oxide regions, the collector region laterally extending under a corresponding one of the field oxide regions and each side of the collector region being connected with a corresponding one of the pseudo buried layers; a matching layer formed under both the pseudo buried layers and the collector region; and two deep hole electrodes, each being formed in a corresponding one of the field oxide regions, the deep hole electrodes being connected to the corresponding ones of the pseudo buried layers for picking up the collector region. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Jun Hu, Jing Shi, Wensheng Qian, Donghua Liu, Wenting Duan, Fan Chen, Tzuyin Chiu
  • Patent number: 8829650
    Abstract: A zener diode in a SiGe BiCMOS process is disclosed. An N-type region of the zener diode is formed in an active region and surrounded by an N-deep well. A pseudo buried layer is formed under each of the shallow trench field oxide regions on a corresponding side of the active region, and the N-type region is connected to the pseudo buried layers via the N-deep well. The N-type region has its electrode picked up by deep hole contacts. A P-type region of the zener diode is formed of a P-type ion implanted region in the active region. The P-type region is situated above and in contact with the N-type region, and has a doping concentration greater than that of the N-type region. The P-type region has its electrode picked up by metal contact. A method of fabricating zener diode in a SiGe BiCMOS process is also disclosed.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 9, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Donghua Liu, Jun Hu, Wenting Duan, Wensheng Qian, Jing Shi
  • Patent number: 8785977
    Abstract: A high-speed SiGe HBT is disclosed, which includes: a substrate; STIs formed in the substrate; a collector region formed beneath the substrate surface and located between the STIs; an epitaxial dielectric layer including two portions, one being located on the collector region, the other being located on one of the STIs; a base region formed both in a region between and on surfaces of the two portions of the epitaxial dielectric layer; an emitter dielectric layer including two portions, both portions being formed on the base region; an emitter region formed both in a region between and on surfaces of the two portions of the emitter dielectric layer; a contact hole formed on a surface of each of the base region, the emitter region and the collector region. A method of manufacturing high-speed SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
  • Patent number: 8779473
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) device that includes a substrate; a buried oxide layer near a bottom of the substrate; a collector region above and in contact with the buried oxide layer; a field oxide region on each side of the collector region; a pseudo buried layer under each field oxide region and in contact with the collector region; and a through region under and in contact with the buried oxide layer. A method for manufacturing a SiGe HBT device is also disclosed. The SiGe HBT device can isolate noise from the bottom portion of the substrate and hence can improve the intrinsic noise performance of the device at high frequencies.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: July 15, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Donghua Liu, Jing Shi, Wenting Duan, Wensheng Qian, Jun Hu
  • Patent number: 8759880
    Abstract: An ultra-high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), which includes: a P-type substrate; an N-type matching layer, a P-type matching layer and an N? collector region stacked on the P-type substrate from bottom up; two field oxide regions separately formed in the N? collector region; N+ pseudo buried layers, each under a corresponding one of the field oxide regions and in contact with each of the N-type matching layer, the P-type matching layer and the N? collector region; an N+ collector region between the two field oxide regions and through the N? collector region and the P-type matching layer and extending into the N-type matching layer; and deep hole electrodes, each in a corresponding one of the field oxide regions and in contact with a corresponding one of the N+ pseudo buried layers. A method of fabricating an ultra-high voltage SiGe HBT is also disclosed.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: June 24, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Jing Shi, Donghua Liu, Jun Hu, Wensheng Qian, Wenting Duan, Fan Chen
  • Patent number: 8748238
    Abstract: An ultra high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, in which, a collector region is formed between two isolation structures; a pseudo buried layer is formed under each isolation structure and each side of the collector region is connected with a corresponding pseudo buried layer; a SiGe field plate is formed on each of the isolation structures; each pseudo buried layer is picked up by a first contact hole electrode and each SiGe field plate is picked up by a second contact hole electrode; and each first contact hole electrode is connected to its adjacent second contact hole electrode and the two contact hole electrodes jointly serve as an emitter. A manufacturing method of the ultra high voltage SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: June 10, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Donghua Liu, Jing Shi, Wenting Duan, Wensheng Qian, Jun Hu
  • Publication number: 20140124838
    Abstract: A high-speed SiGe HBT is disclosed, which includes: a substrate; STIs formed in the substrate; a collector region formed beneath the substrate surface and located between the STIs; an epitaxial dielectric layer including two portions, one being located on the collector region, the other being located on one of the STIs; a base region formed both in a region between and on surfaces of the two portions of the epitaxial dielectric layer; an emitter dielectric layer including two portions, both portions being formed on the base region; an emitter region formed both in a region between and on surfaces of the two portions of the emitter dielectric layer; a contact hole formed on a surface of each of the base region, the emitter region and the collector region. A method of manufacturing high-speed SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
  • Patent number: 8674480
    Abstract: A high voltage bipolar transistor with shallow trench isolation (STI) comprises the areas of a collector formed by implanting first electric type impurities into active area and connected with pseudo buried layers at two sides; Pseudo buried layers which are formed by implanting high dose first type impurity through the bottoms of STI at two sides if active area, and do not touch directly; deep contact through field oxide to contact pseudo buried layers and pick up the collectors; a base deposited on the collector by epitaxial growth and in-situ doped by second electric type impurity, in which the intrinsic base touches local collector and extrinsic base is used for base pick-up; a emitter which is a polysilicon layer deposited on the intrinsic base and doped with first electric type impurities. This invention makes the depletion region of collector/base junction from 1D (vertical) distribution to 2D (vertical and lateral) distribution.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: March 18, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, Wensheng Qian, YungChieh Fan, Jun Hu, Donghua Liu, Yukun Lv