Patents by Inventor Douglas A. Keszler

Douglas A. Keszler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966159
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: April 23, 2024
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Patent number: 11947262
    Abstract: The processing of radiation patternable organometallic coatings is shown to be improved through the appropriate selection of post processing conditions between coating and development of the pattern. In particular, a coated wafer can be subjected to process delays to allow aging of the coating at various process points, in particular following irradiation. Process delays can be combined and interspersed with heating steps. The atmosphere above the coated wafer at various process steps can be adjusted to obtain desired improvements in the development of the pattern. Reactive gases can be beneficial with respect to improvement of coating properties.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: April 2, 2024
    Assignee: Inpria Corporation
    Inventors: Alan J. Telecky, Jason K. Stowers, Douglas A. Keszler, Stephen T. Meyers, Peter de Schepper, Sonia Castellanos Ortega, Michael Greer, Kirsten Louthan
  • Publication number: 20240102147
    Abstract: Examples are disclosed relate to the application of films of transparent conductors over fluorine-doped tin oxide (FTO) to form a multi-layer structure comprising a lower sheet resistance and smoother surface, while exhibiting a higher transparency, than a single thicker FTO with an equivalent thickness. Various compositions of transparent conductor may be deposited using such solutions. Examples include Sn:In2O3, Ti:In2O3, Cd2SnO4, and combinations of two or more such materials. One example provides optical device, comprising a substrate, an FTO film on the substrate, and a film of a transparent conductor on the FTO film.
    Type: Application
    Filed: September 28, 2023
    Publication date: March 28, 2024
    Inventors: Cory K. Perkins, Jennie Amador, Douglas A. Keszler
  • Publication number: 20230416105
    Abstract: Certain disclosed embodiments concern an organic solution suitable for forming metal oxide films, particularly thins films, comprising a metal salt selected from a Sn salt, an Sb salt, a dopant, and combinations thereof. The salt often is a halide salt, such as SnCl2 or SbCl3. Certain disclosed compositions are preferably formed using substantially pure reagents and may include a dopant, such as a fluoride dopant. Described solutions may be used to form thin films, such as a thin film comprising SnO2, Sb:SnO2, F:SnO2, or (Sb,F):SnO2. Such thin films may have any desired thickness, such as a thickness of from 200 or 700 nm, and are extremely smooth, such as having an RMS surface roughness >3 nm, such as 3 nm to 10 nm, with certain embodiments having an RMS surface roughness <2 nm or <1 nm. Devices can be assembled comprising the thin films on a suitable substrate.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Applicant: Oregon State University
    Inventors: Cory K. Perkins, Douglas A. Keszler
  • Publication number: 20230393325
    Abstract: Examples are disclosed that relate to acid-stabilized precursor solutions for metal oxide film deposition, and to films deposited using the disclosed acid-stabilized precursor solutions. One disclosed example provides an aqueous precursor solution for forming a metal oxide film by liquid-phase deposition, the precursor solution comprising metal ions, a photolyzable and/or pyrolyzable ligand, and an acid. Another example provides a method of forming a metal oxide film, the method comprising coating a substrate with an aqueous precursor solution comprising metal ions, a photolyzable and/or pyrolyzable ligand, and an acid to form a film, and curing the film. Examples also are disclosed that relate to methods of fabricating optical waveguides using solution-based deposition of metal oxide films, followed by patterning. Examples are also disclosed that relate to optical waveguides fabricated according to the disclosed methods.
    Type: Application
    Filed: June 1, 2023
    Publication date: December 7, 2023
    Inventors: Omid Sadeghi, Cory K Perkins, Douglas A Keszler
  • Patent number: 11809081
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: November 7, 2023
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20230305390
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 28, 2023
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 11754924
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Patent number: 11693312
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: July 4, 2023
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Publication number: 20230112618
    Abstract: Compositions comprising RqSnOm(OH)x(HCO3)y(CO3)z are disclosed, where R is (i) C1—C10 hydrocarbyl or (ii) heteroaliphatic, heteroaryl, or heteroaryl-aliphatic including 1-10 carbon atoms and one or more heteroatoms; q = 0.1-1; x ? 4; y ? 4; z ? 2; m = 2 - q/2 - x/2 - y/2 - z; and (q/2 + x/2 + y/2 + z) ? 2 Methods of making a photoresist film comprising [(RSn)12O14(OH)6](OH)2 on a substrate also are disclosed. The photoresist film may be irradiated to form RqSnOm(OH)x(HCO3)y(CO3)z.
    Type: Application
    Filed: February 25, 2021
    Publication date: April 13, 2023
    Applicant: Oregon State University
    Inventors: Nizan Kenane, Douglas A. Keszler
  • Patent number: 11599022
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 7, 2023
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 11566328
    Abstract: Aqueous solutions of halogenides (oxyhalides) of zirconium and hafnium (M) with values of ?=X/M near one, for X=Cl, Br and I form amorphous solids or glasses, designated as M,X, in contrast to important crystalline oxyhalide end members with ?=2 (designated as MOX). The present disclosure describes methods for producing amorphous thin films comprising halogenides upon evaporation, and provides some measured physical properties, with attention to compositions for ?<2. The value of a below which only glasses are formed is about one for oxychlorides and oxybromides of both Zr and Hf. The chemical formulas for all the halogenide thin films prepared as noted above can be written as a function of the single parameter ?, according to M(OH)4-?X?.(4?-1)H2O. This is valid for e.g., crystalline zirconium oxychloride octahydrate, and for the glassy solids found for ?<2 and down to the onset of hydrolysis, ??0.5.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: January 31, 2023
    Assignee: Oregon State University
    Inventors: Jennie M. Amador, Douglas A. Keszler, James Sommers
  • Publication number: 20230004081
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 5, 2023
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Publication number: 20230004090
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20230004082
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 5, 2023
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Publication number: 20230004083
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 5, 2023
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Publication number: 20220413382
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 29, 2022
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 11537048
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: December 27, 2022
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20220365429
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Application
    Filed: June 2, 2022
    Publication date: November 17, 2022
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Patent number: 11500284
    Abstract: Organometallic radiation resist compositions are described based on tin ions with alkyl ligands. Some of the compositions have branched alkyl ligands to provide for improved patterning contrast while maintaining a high degree of solution stability. Blends of compounds with distinct alkyl ligands can provide further improvement in the patterning. High resolution patterning with a half-pitch of no more than 25 nm can be achieved with a line width roughness of no more than about 4.5 nm. Synthesis techniques have been developed that allow for the formation of alkyl tin oxide hydroxide compositions with very low metal contamination.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: November 15, 2022
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Michael K. Kocsis, Alan J. Telecky, Brian J. Cardineau