Patents by Inventor Douglas C. Hofmann

Douglas C. Hofmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11123797
    Abstract: Methods and alloy systems for non-Be BMG matrix composite materials that can be used to additively manufacturing parts with superior mechanical properties, especially high toughness and strength, are provided. Alloys are directed to BMGMC materials comprising a high strength BMG matrix reinforced with properly scaled, soft, crystalline metal dendrite inclusions dispersed throughout the matrix in a sufficient concentration to resist fracture.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 21, 2021
    Assignee: California Institute of Technology
    Inventor: Douglas C. Hofmann
  • Publication number: 20210268585
    Abstract: Ti-based metal matrix composites, methods of their additive manufacture, and parts manufactured therefrom and thereby are provided. Method include layer-by-layer additive manufacturing for fabricating Ti-based metal matrix composite parts thicker than 0.5 mm, in layers with thickness between 10-1000 micrometers. The parts formed may have one or more of the following properties: a tensile strength greater than 1 GPa, a fracture toughness greater than 40 MPa m1/2, a yield strength divided by the density greater than 200 MPa cm3/g, and a total strain to failure in a tension test greater than 5%.
    Type: Application
    Filed: March 15, 2021
    Publication date: September 2, 2021
    Applicant: California Institute of Technology
    Inventor: Douglas C. Hofmann
  • Publication number: 20210254699
    Abstract: Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale gears. In one embodiment, a method of fabricating a bulk metallic glass-based macroscale gear, where at least either the thickness of the gear is greater than 3 mm or the diameter of the gear is greater than 9 mm, includes: obtaining design parameters of the gear to be formed; selecting a bulk metallic glass from which the gear will be formed based on the obtained design parameters, where the selected bulk metallic glass is characterized by a resistance to standard modes of wear and a resistance to brittle fracture such that a gear can be formed from the selected bulk metallic glass that accords with the obtained design parameters; and fabricating the gear from the selected bulk metallic glass that accords with the obtained design parameters.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 19, 2021
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Andrew Kennett, Kobie T. Boykins
  • Publication number: 20210207281
    Abstract: Systems and method for fabricating a metal core truss pan& with seamlessly embedded features in accordance with embodiments of the invention are illustrated. One embodiment includes a method for producing a metal core truss pan& composite, the method including fabricating a sacrificial core truss panel including a plurality of interconnected truss members and at least one embedded feature, and plating the sacrificial core truss panel with a layer of metal forming a metal core truss panel including a plurality of interconnected metal truss members and at least one seamlessly embedded metal feature.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 8, 2021
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Patent number: 11014162
    Abstract: Ti-based metal matrix composites, methods of their additive manufacture, and parts manufactured therefrom and thereby are provided. Method include layer-by-layer additive manufacturing for fabricating Ti-based metal matrix composite parts thicker than 0.5 mm, in layers with thickness between 10-1000 micrometers. The parts formed may have one or more of the following properties: a tensile strength greater than 1 GPa, a fracture toughness greater than 40 MPa m1/2, a yield strength divided by the density greater than 200 MPa cm3/g, and a total strain to failure in a tension test greater than 5%.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 25, 2021
    Assignee: California Institute of Technology
    Inventor: Douglas C. Hofmann
  • Publication number: 20210131460
    Abstract: Bulk metallic glass-based gripping arrays of nano- or micro-scale grippers are described, along with the methods of fabrication and use thereof. BMG-based gripping arrays can be fabricated via facile and scalable thermoplastic forming/molding methods typically available to polymeric materials, yet they possess many of the favorable properties of metallic alloys that polymers lack, such as, for example, excellent mechanical properties and robustness towards wear and adverse surrounding conditions.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 6, 2021
    Applicant: California Institute of Technology
    Inventors: Punnathat Bordeenithikasem, Victor E. White, Kalind C. Carpenter, Douglas C. Hofmann
  • Patent number: 10968527
    Abstract: Systems and method for fabricating a metal core truss panel with seamlessly embedded features in accordance with embodiments of the invention are illustrated. One embodiment includes a method for producing a metal core truss panel composite, the method including fabricating a sacrificial core truss panel including a plurality of interconnected truss members and at least one embedded feature, and plating the sacrificial core truss panel with a layer of metal forming a metal core truss panel including a plurality of interconnected metal truss members and at least one seamlessly embedded metal feature.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: April 6, 2021
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts
  • Patent number: 10953688
    Abstract: Systems and methods in accordance with embodiments of the invention implement flexible members that include integrated tools made from metallic glass-based materials. In one embodiment, a structure includes: a flexible member characterized by an elongated geometry and an integrated tool disposed at one end of the elongated geometry; where the flexible member includes a metallic glass-based material.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: March 23, 2021
    Assignee: California Institute of Technology
    Inventors: Aaron Parness, Kalind C. Carpenter, Douglas C. Hofmann
  • Patent number: 10946447
    Abstract: Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 16, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Douglas C Hofmann
  • Patent number: 10941847
    Abstract: Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale gears. In one embodiment, a method of fabricating a bulk metallic glass-based macroscale gear, where at least either the thickness of the gear is greater than 3 mm or the diameter of the gear is greater than 9 mm, includes: obtaining design parameters of the gear to be formed; selecting a bulk metallic glass from which the gear will be formed based on the obtained design parameters, where the selected bulk metallic glass is characterized by a resistance to standard modes of wear and a resistance to brittle fracture such that a gear can be formed from the selected bulk metallic glass that accords with the obtained design parameters; and fabricating the gear from the selected bulk metallic glass that accords with the obtained design parameters.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: March 9, 2021
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Andrew Kennett, Kobie T. Boykins
  • Patent number: 10883528
    Abstract: Systems and methods in accordance with embodiments of the invention operate to structurally interrelate two components using inserts made from metallic glass-based materials. In one embodiment, a method of structurally interrelating two components includes: forming an insert from a metallic glass-based composition; where the formed insert includes a metallic glass-based material; affixing the insert to a first component; and structurally interrelating the second component to the first component using the insert.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: January 5, 2021
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Samuel C. Bradford
  • Publication number: 20200318721
    Abstract: Systems and methods in accordance with embodiments of the invention implement tailored metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a flexspline of a strain wave gear includes: forming a MG-based composition into a flexspline using one of a thermoplastic forming technique and a casting technique; where the forming of the MG-based composition results in a formed MG-based material; where the formed flexspline is characterized by: a minimum thickness of greater than approximately 1 mm and a major diameter of less than approximately 4 inches.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Brian H. Wilcox
  • Publication number: 20200282582
    Abstract: A cutting tool with a plurality of cutting elements connected to a support structure wherein a portion of the support structure is configured to flex or bend based on the rotational frequency of the cutting tool. The rotational frequency of the cutting tool is a product of the design and composition of the tool.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 10, 2020
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Morgan Hendry, Samad A. Firdosy, Andre M. Pate, Christopher R. Yahnker, Cecily M. Sunday
  • Publication number: 20200284146
    Abstract: A cutting tool with a cutting region and a connecting support region where the support region is designed to connect to an external motor assembly. The cutting tool is also has a porous region that is integrated within a portion of the tool such that as the tool cuts material the porous region can allow samples of the cut material to permeate into an internal chamber of the tool. Once in the internal chamber material samples can be analyzed in-situ for direct composition analysis.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 10, 2020
    Applicant: California Institute of Technology
    Inventors: Christopher R. Yahnker, Mark S. Anderson, Douglas C. Hofmann, Morgan Hendry, Samad A. Firdosy, Andre M. Pate, Luis C.F. Tosi
  • Publication number: 20200278017
    Abstract: Harmonic drives are used widely in robotics as a method for achieving high gear reductions and for driving force transmissions. The harmonic drive is made a three components: a wave generator, a flexspline, and a circular spline. Embodiments described flexsplines for a metal strain wave gearing. The cup of the flexspline is free from sharp edges and with a rounded bottom with a curvature maximized based on the geometry of the flexspline. Compared to a steel flexspline, implementations of flexsplines will have the same outer diameter, the same number of teeth and profile, the same input shaft/base, the same wall thickness near the teeth, but comprise a rounded bottom where the input shaft/base transitions to the straight wall of the flexspline, providing improved performance of BMG flexsplines by reducing low cycle fatigue failures due to stress concentrations.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Robert P. Dillon, Scott N. Roberts
  • Publication number: 20200278016
    Abstract: Harmonic drives (HDs) are used widely in robotics as a method for achieving high gear reductions and for driving force transmissions. The HD is made a three components: a wave generator, a flexspline, and a circular spline. Low-cost wave generators for metal strain wave gearing are provided. Wave generators are provided that incorporate commercially available bearings that form an ellipse either statically or through adjustment. Wave generators are optimized to maximum performance, including increasing the efficiency and the lifetime, while maximizing the running torque. The shape, size, number, type and location of the bearings can be changed so that the wave generator fails at a similar lifetime as a low cost flexspline. The shape of the wave generator may be adjusted to change the performance of the strain wave gear. The combination of low-cost flexsplines with low-cost wave generators reduces the cost of the strain wave gear.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Brian H. Wilcox
  • Patent number: 10690227
    Abstract: Systems and methods in accordance with embodiments of the invention implement tailored metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a flexspline of a strain wave gear includes: forming a MG-based composition into a flexspline using one of a thermoplastic forming technique and a casting technique; where the forming of the MG-based composition results in a formed MG-based material; where the formed flexspline is characterized by: a minimum thickness of greater than approximately 1 mm and a major diameter of less than approximately 4 inches.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 23, 2020
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Brian H. Wilcox
  • Patent number: 10487934
    Abstract: Systems and methods in accordance with embodiments of the invention efficaciously implement robust gearbox housings. In one embodiment, a method of fabricating a gearbox housing includes: providing an alloy composition from which the gearbox housing will be fabricated from; casting the alloy composition around a solid body so as to form a part characterized by the inclusion of a cavity, where the cast part includes a metallic glass-based material; and nondestructively separating the cast part from the solid body.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 26, 2019
    Assignee: California Institute of Technology
    Inventors: Andrew Kennett, Douglas C. Hofmann, John Paul C. Borgonia
  • Patent number: 10471652
    Abstract: Systems and methods in accordance with embodiments of the invention implement additive manufacturing techniques that employ different sets of deposition characteristics and/or material formation characteristics during the additive manufacture of an object so as to strategically build up the object. In many embodiments, material used to build up an object is deposited at different deposition rates during the additive manufacture of the object, and the object is thereby strategically built up. In one embodiment, a method of additively manufacturing an object includes: depositing material onto a surface at a first deposition rate so as to define a first region of the object to be additively manufactured; and depositing material onto a surface at a second deposition rate so as to define a second region of the object to be additively manufactured; where the second deposition rate is different from the first deposition rate.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: November 12, 2019
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia
  • Publication number: 20190195269
    Abstract: Systems and methods in accordance with embodiments of the invention operate to structurally interrelate two components using inserts made from metallic glass-based materials. In one embodiment, a method of structurally interrelating two components includes: forming an insert from a metallic glass-based composition; where the formed insert includes a metallic glass-based material; affixing the insert to a first component; and structurally interrelating the second component to the first component using the insert.
    Type: Application
    Filed: November 1, 2018
    Publication date: June 27, 2019
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Samuel C. Bradford