Patents by Inventor Douglas C. La Tulipe, Jr.

Douglas C. La Tulipe, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9620481
    Abstract: A metallic dopant element having a greater oxygen-affinity than copper is introduced into, and/or over, surface portions of copper-based metal pads and/or surfaces of a dielectric material layer embedding the copper-based metal pads in each of two substrates to be subsequently bonded. A dopant-metal silicate layer may be formed at the interface between the two substrates to contact portions of metal pads not in contact with a surface of another metal pad, thereby functioning as an oxygen barrier layer, and optionally as an adhesion material layer. A dopant metal rich portion may be formed in peripheral portions of the metal pads in contact with the dopant-metal silicate layer. A dopant-metal oxide portion may be formed in peripheral portions of the metal pads that are not in contact with a dopant-metal silicate layer.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: April 11, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Daniel C. Edelstein, Douglas C. La Tulipe, Jr., Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo, Kevin R. Winstel
  • Patent number: 9583628
    Abstract: A device includes a semiconductor substrate. A gate stack on the semiconductor substrate includes a gate dielectric layer and a gate conductor layer. Low-k spacers are adjacent to the gate dielectric layer. Raised source/drain (RSD) regions are adjacent to the low-k spacers. The low-k spacers are embedded in an ILD on the RSD regions.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: February 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Douglas C. La Tulipe, Jr.
  • Patent number: 9543229
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, Jr., Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9536809
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Grant
    Filed: August 30, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, Jr., Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9412620
    Abstract: Method and Apparatus so configured for the fabrication of three-dimensional integrated devices. A crystalline substrate within an area of a donor semiconductor wafer is etched. The substrate side is located opposite a device layer and has a buried insulating layer and a substrate thickness. The etching removes at least a substantial portion of the crystalline substrate within the area such that the device layer and the buried insulating layer in the area is to conform to a pattern specific topology on an acceptor surface. The donor semiconductor wafer is supported with a supporting structure that allows the donor semiconductor wafer to flexibly conform to the pattern specific topology within at least a portion of the area after the etching to enable conformality and reliable bonding to the device surfaces of an acceptor wafer to form a three dimensional integrated device.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Douglas C. La Tulipe, Jr., Sampath Purushothaman, James Vichiconti
  • Patent number: 9318375
    Abstract: A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: April 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Douglas C. La Tulipe, Jr., Mark Todhunter Robson
  • Publication number: 20150371927
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Application
    Filed: August 30, 2015
    Publication date: December 24, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, JR., Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9219129
    Abstract: A semiconductor structure including expanded source/drain regions that extend in an opposite direction of a gate electrode is provided. The semiconductor structure includes a stack of a body-containing region and a buried insulator portion, a gate dielectric in contact with a surface of the body-containing region, a gate electrode in contact with the gate dielectric, and a source region and a drain region laterally spaced by, and in contact with, the stack. The semiconductor structure further includes a contact level dielectric layer deposited on surfaces of the source region, the drain region and the buried insulator portion.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 22, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Douglas C. La Tulipe, Jr.
  • Patent number: 9190303
    Abstract: A bonding layer of a first wafer article is thermally treated and a bonding layer of a second wafer article is thermally treated in accordance with first and second process parameters, respectively prior to bonding the first wafer article with the second wafer article. First and second grid distortion in the first and second wafer articles is measured and a difference is determined between the first and second grid distortions. A prediction is made for maintaining the difference within a prescribed tolerance. At least one of the first process parameters and the second process parameters is conditionally varied in accordance with the prediction. The thermal treating of the first and second wafer articles can then be performed with respect to another pair of the first and second wafer articles prior to bonding to one another through their respective bonding layers.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: November 17, 2015
    Assignee: GLOBALFOUDRIES INC.
    Inventors: Douglas C. La Tulipe, Jr., Wei Lin, Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9171749
    Abstract: A method of removing a handler wafer. There is provided a handler wafer and a semiconductor device wafer having a plurality of semiconductor devices, the semiconductor device wafer having an active surface side and an inactive surface side. An amorphous carbon layer is applied to a surface of the handler wafer. An adhesive layer is applied to at least one of the amorphous carbon layer of the handler wafer and the active surface side of the semiconductor device wafer. The handler wafer is joined to the semiconductor device wafer through the adhesive layer or layers. Laser radiation is applied to the handler wafer to cause heating of the amorphous carbon layer that in turn causes heating of the adhesive layer or layers. The plurality of semiconductor devices of the semiconductor device wafer are then separated from the handler wafer.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES U.S.2 LLC
    Inventors: Bing Dang, Sarah H. Knickerbocker, Douglas C. La Tulipe, Jr., Spyridon Skordas, Cornelia K. Tsang, Kevin R. Winstel
  • Publication number: 20150279709
    Abstract: A bonding layer of a first wafer article is thermally treated and a bonding layer of a second wafer article is thermally treated in accordance with first and second process parameters, respectively prior to bonding the first wafer article with the second wafer article. First and second grid distortion in the first and second wafer articles is measured and a difference is determined between the first and second grid distortions. A prediction is made for maintaining the difference within a prescribed tolerance. At least one of the first process parameters and the second process parameters is conditionally varied in accordance with the prediction. The thermal treating of the first and second wafer articles can then be performed with respect to another pair of the first and second wafer articles prior to bonding to one another through their respective bonding layers.
    Type: Application
    Filed: May 19, 2015
    Publication date: October 1, 2015
    Inventors: Douglas C. La Tulipe, JR., Wei Lin, Spyridon Skordas, Kevin R. Winstel
  • Publication number: 20150262976
    Abstract: A metallic dopant element having a greater oxygen-affinity than copper is introduced into, and/or over, surface portions of copper-based metal pads and/or surfaces of a dielectric material layer embedding the copper-based metal pads in each of two substrates to be subsequently bonded. A dopant-metal silicate layer may be formed at the interface between the two substrates to contact portions of metal pads not in contact with a surface of another metal pad, thereby functioning as an oxygen barrier layer, and optionally as an adhesion material layer. A dopant metal rich portion may be formed in peripheral portions of the metal pads in contact with the dopant-metal silicate layer. A dopant-metal oxide portion may be formed in peripheral portions of the metal pads that are not in contact with a dopant-metal silicate layer.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 17, 2015
    Inventors: Daniel C. Edelstein, Douglas C. La Tulipe, Jr., Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo, Kevin R. Winstel
  • Publication number: 20150187733
    Abstract: The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating a 3D integration scheme for multiple semiconductor wafers using an arrangement of intra-wafer through silicon vias (TSVs) to electrically connect the front side of a first integrated circuit (IC) chip to large back side wiring on the back side of the first IC chip and inter-wafer TSVs to electrically connect the first IC chip to a second IC chip.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Applicant: International Business Machines Corporation
    Inventors: Pooja R. Batra, John W. Golz, Subramanian S. Iyer, Douglas C. La Tulipe, Jr., Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9064937
    Abstract: A metallic dopant element having a greater oxygen-affinity than copper is introduced into, and/or over, surface portions of copper-based metal pads and/or surfaces of a dielectric material layer embedding the copper-based metal pads in each of two substrates to be subsequently bonded. A dopant-metal silicate layer may be formed at the interface between the two substrates to contact portions of metal pads not in contact with a surface of another metal pad, thereby functioning as an oxygen barrier layer, and optionally as an adhesion material layer. A dopant metal rich portion may be formed in peripheral portions of the metal pads in contact with the dopant-metal silicate layer. A dopant-metal oxide portion may be formed in peripheral portions of the metal pads that are not in contact with a dopant-metal silicate layer.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 23, 2015
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Douglas C. La Tulipe, Jr., Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo, Kevin R. Winstel
  • Patent number: 9059039
    Abstract: A bonding layer of the first wafer article is thermally treated and a bonding layer of a second wafer article is thermally treated in accordance with first and second process parameters, respectively prior to bonding the first wafer article with the second wafer article. First and second grid distortion in the first and second wafer articles is measured and a difference is determined between the first and second grid distortions. A prediction is made for maintaining the difference within a prescribed tolerance. At least one of the first process parameters and the second process parameters can be conditionally varied in accordance with the prediction. The thermally treating of the first wafer article and the thermally treating of the second wafer article can then be performed with respect to another pair of the first and second wafer articles prior to bonding the another pair of wafer articles to one another through their respective bonding layers.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, Jr., Wei Lin, Spyridon Skordas, Kevin R. Winstel
  • Publication number: 20150147869
    Abstract: Method and Apparatus so configured for the fabrication of three-dimensional integrated devices. A crystalline substrate within an area of a donor semiconductor wafer is etched. The substrate side is located opposite a device layer and has a buried insulating layer and a substrate thickness. The etching removes at least a substantial portion of the crystalline substrate within the area such that the device layer and the buried insulating layer in the area is to conform to a pattern specific topology on an acceptor surface. The donor semiconductor wafer is supported with a supporting structure that allows the donor semiconductor wafer to flexibly conform to the pattern specific topology within at least a portion of the area after the etching to enable conformality and reliable bonding to the device surfaces of an acceptor wafer to form a three dimensional integrated device.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 28, 2015
    Applicant: International Business Machines Corporation
    Inventors: Douglas C. LA TULIPE, JR., Sampath PURUSHOTHAMAN, James VICHICONTI
  • Publication number: 20150137240
    Abstract: A device includes a semiconductor substrate. A gate stack on the semiconductor substrate includes a gate dielectric layer and a gate conductor layer. Low-k spacers are adjacent to the gate dielectric layer. Raised source/drain (RSD) regions are adjacent to the low-k spacers. The low-k spacers are embedded in an ILD on the RSD regions.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 21, 2015
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Douglas C. La Tulipe, JR.
  • Publication number: 20150132924
    Abstract: A method of removing a handler wafer. There is provided a handler wafer and a semiconductor device wafer having a plurality of semiconductor devices, the semiconductor device wafer having an active surface side and an inactive surface side. An amorphous carbon layer is applied to a surface of the handler wafer. An adhesive layer is applied to at least one of the amorphous carbon layer of the handler wafer and the active surface side of the semiconductor device wafer. The handler wafer is joined to the semiconductor device wafer through the adhesive layer or layers. Laser radiation is applied to the handler wafer to cause heating of the amorphous carbon layer that in turn causes heating of the adhesive layer or layers. The plurality of semiconductor devices of the semiconductor device wafer are then separated from the handler wafer.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: International Business Machines Corporation
    Inventors: Bing Dang, Sarah H. Knickerbocker, Douglas C. La Tulipe, JR., Spyridon Skordas, Cornelia K. Tsang, Kevin R. Winstel
  • Patent number: 9029238
    Abstract: A method for processing a semiconductor wafer includes applying a release layer to a transparent handler. An adhesive layer, that is distinct from the release layer, is applied between a semiconductor wafer and the transparent handler having the release layer applied thereon. The semiconductor wafer is bonded to the transparent handler using the adhesive layer. The semiconductor wafer is processed while it is bonded to the transparent handler. The release layer is ablated by irradiating the release layer through the transparent handler with a laser. The semiconductor wafer is removed from the transparent handler.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Russell A. Budd, John U. Knickerbocker, Robert E. Trzcinski, Douglas C. La Tulipe, Jr.
  • Publication number: 20150072444
    Abstract: A bonding layer of the first wafer article is thermally treated and a bonding layer of a second wafer article is thermally treated in accordance with first and second process parameters, respectively prior to bonding the first wafer article with the second wafer article. First and second grid distortion in the first and second wafer articles is measured and a difference is determined between the first and second grid distortions. A prediction is made for maintaining the difference within a prescribed tolerance. At least one of the first process parameters and the second process parameters can be conditionally varied in accordance with the prediction. The thermally treating of the first wafer article and the thermally treating of the second wafer article can then be performed with respect to another pair of the first and second wafer articles prior to bonding the another pair of wafer articles to one another through their respective bonding layers.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, JR., Wei Lin, Spyridon Skordas, Kevin R. Winstel