Patents by Inventor Douglas C. La Tulipe, Jr.

Douglas C. La Tulipe, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7528056
    Abstract: A cost-effective and simple method of fabricating strained semiconductor-on-insulator (SSOI) structures which avoids epitaxial growth and subsequent wafer bonding processing steps is provided. In accordance with the present invention, a strain-memorization technique is used to create strained semiconductor regions on a SOI substrate. The transistors formed on the strained semiconductor regions have higher carrier mobility because the Si regions have been strained. The inventive method includes (i) ion implantation to create a thin amorphization layer, (ii) deposition of a high stress film on the amorphization layer, (iii) a thermal anneal to recrystallize the amorphization layer, and (iv) removal of the stress film. Because the SOI substrate was under stress during the recrystallization process, the final semiconductor layer will be under stress as well. The amount of stress and the polaity (tensile or compressive) of the stress can be controlled by the type and thickness of the stress films.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Douglas C. La Tulipe, Jr., Leathen Shi, Anna W. Topol, James Vichiconti, Albert M. Young
  • Publication number: 20090065941
    Abstract: A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Inventors: Douglas C. La Tulipe, JR., Mark Todhunter Robson
  • Publication number: 20090068835
    Abstract: A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Inventors: Douglas C. La Tulipe, JR., Mark Todhunter Robson
  • Patent number: 7494915
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: February 24, 2009
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Mark Hoinkis, Steffen K. Kaldor, Erdem Kaltalioglu, Kaushik A. Kumar, Douglas C. La Tulipe, Jr., Jochen Schacht, Andrew H. Simon, Terry A. Spooner, Yun-Yu Wang, Clement H. Wann, Chih-Chao Yang
  • Patent number: 7488630
    Abstract: A method which is intended to facilitate and/or simplify the process of fabricating interlayer vias by selective modification of the FEOL film stack on a transfer wafer is provided. Specifically, the present invention provides a method in which two dimensional devices are prepared for subsequent integration in a third dimension at the transition between normal FEOL processes by using an existing interlayer contact mask to define regions in which layers of undesirable dielectrics and metal are selectively removed and refilled with a middle-of-the-line (MOL) compatible dielectric film. As presented, the inventive method is compatible with standard FEOL/MOL integration schemes, and it guarantees a homogeneous dielectric film stack specifically in areas where interlayer contacts are to be formed, thus allowing the option of a straightforward integration path, if desired.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: David J. Frank, Douglas C. La Tulipe, Jr., Leathen Shi, Steven E. Steen, Anna W. Topol
  • Patent number: 7241696
    Abstract: Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: July 10, 2007
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Larry Clevenger, Timothy Joseph Dalton, Mark Hoinkis, Steffen K. Kaldor, Kaushik Kumar, Douglas C. La Tulipe, Jr., Soon-Cheon Seo, Andrew Herbert Simon, Yun-Yu Wang, Chih-Chao Yang, Haining Yang
  • Patent number: 7122462
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: October 17, 2006
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Mark Hoinkis, Steffen K. Kaldor, Erdem Kaltalioglu, Kaushik A. Kumar, Douglas C. La Tulipe, Jr., Jochen Schacht, Andrew H. Simon, Terry A. Spooner, Yun-Yu Wang, Clement H. Wann, Chih-Chao Yang
  • Patent number: 7001835
    Abstract: A hardmask layer in the back end of an integrated circuit is formed from TaN having a composition of less than 50% Ta and a resistivity greater than 400 ?Ohm-cm, so that it is substantially transparent in the visible and permits visual alignment of upper and lower alignment marks through the hardmask and intervening layer(s) of ILD. A preferred method of formation of the hardmask is by sputter deposition of Ta in an ambient containing N2 and a flow rate such that (N2 flow)/(N2+carrier flow)>0.5.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 21, 2006
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Mark Hoinkis, Steffen K. Kaldor, Kaushik A. Kumar, Stephen M. Rossnagel, Andrew H. Simon, Douglas C. La Tulipe, Jr.