Patents by Inventor Douglas G. Evans

Douglas G. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6033425
    Abstract: A retractor comprising a rack having a first section and a second section, a first blade fixedly attached to the rack, and a second blade movably attached to the rack. The first and second blades engage two adjacent ribs in a patient. The first section and the second section of the rack form a nonlinear angle therebetween so that when the first section is horizontally disposed, the second section is disposed at an angle relative to a horizontal plane. The present invention also uses an external lifting device disposed above the retractor and that creates an upwardly-directed force on the second blade. The retractor increases the field of vision for the surgeon based on the design of the rack and the use of the external lifting device.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: March 7, 2000
    Assignee: Genzyme Corporation
    Inventors: Christopher Sean Looney, Douglas G. Evans
  • Patent number: 6030395
    Abstract: A system and method of use for effecting the bypass or other anastomosis of a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes an anastomosis connector device and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The deployment device may include a dilator to facilitate the placement of the anastomosis device within the interior of the vessel, duct, lumen or other tubular organ. The anastomosis device is preferably formed of a resorbable material and is configured to minimize blood or other fluid turbulence therethrough. The device may include snap-connectors or other components for securing it to the tissue of the vessel, duct, lumen or tubular organ and hemostasis-inducing sealing rings to prevent blood leakage. Other components may be included in the device for expediting the anastomosis procedure, with or without the use of sutures.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: February 29, 2000
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans
  • Patent number: 6017352
    Abstract: A system and method of use for effecting the bypass or other anastomosis of a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercerdilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which the connector assembly is deployed by the deployment instrument. The connector assembly is at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the anastomosis procedure, with or without the use of sutures.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: January 25, 2000
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans
  • Patent number: 6007563
    Abstract: A system for sealing a percutaneous puncture in a blood vessel in a living being and a method of sealing the puncture. The system includes a hemostatic closure, a blood vessel locator device for determining the position of the blood vessel via the percutaneous puncture, and a deployment instrument for deploying the closure within the puncture to seal the puncture. The vessel locator includes means for enabling blood from the vessel to flow therethrough so that the position of the vessel can be rapidly determined. Once the vessel has been located the deployment instrument, which includes a tubular carrier storing the closure, is extended into the puncture to deploy the closure. The closure basically comprises a radiopaque rigid anchor for location within the blood vessel, a compressed collagen plug for location within the puncture tract leading to the vessel, and a thin filament connecting the two in a pulley-like arrangement.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: December 28, 1999
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, Kenneth Kensey
  • Patent number: 5980548
    Abstract: A transmyocardial revascularization system including a plurality of inserts formed of a material to elicit a healing response in tissue of the myocardium and deployment instruments and associated components for deploying the inserts into the wall of the myocardium. The inserts are arranged to be disposed within respective lumens or channels in the wall of the myocardium. The inserts can take various forms, e.g., be solid members, tubular members, or porous members, and may be resorbable, partially resorbable or nonresorbable. In some embodiments the inserts are arranged to be left in place within the channels in the wall of the myocardium to result in plural lumens which enable blood to flow therethrough and into contiguous capillaries. The deployment instruments are arranged to pierce the tissue of the myocardium from either the endocardium or the epicardium to insert the inserts into the myocardium, depending on the particular deployment instrument used.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 9, 1999
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, John E. Nash
  • Patent number: 5922022
    Abstract: A system and method of use for effecting the bypass or other anastomosis of a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which the connector assembly is deployed by the deployment instrument. The connector assembly is at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the anastomosis procedure, with or without the use of sutures.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: July 13, 1999
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans
  • Patent number: 5861004
    Abstract: A system for sealing a percutaneous puncture in a blood vessel in a living being and method of use thereof. The system includes a hemostatic closure, a blood vessel locator device for determining the position of the blood vessel via the percutaneous puncture, and a deployment instrument for deploying the closure within the puncture to seal the puncture. The vessel locator includes means for enabling blood from the vessel to flow therethrough so that the position of the vessel can be rapidly determined. Once the vessel has been located the deployment instrument, which includes a tubular carrier storing the closure, is extended into the puncture to deploy the closure. The closure basically comprises a radiopaque rigid anchor for location within the blood vessel, a compressed collagen plug for location within the puncture tract leading to the vessel, and a thin filament connecting the two in a pulley-like arrangement.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: January 19, 1999
    Assignee: Kensey Nash Corporation
    Inventors: Kenneth Kensey, John E. Nash, Douglas G. Evans