Patents by Inventor Douglas G. Evans

Douglas G. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090234327
    Abstract: A transmyocardial revascularization system including a plurality of inserts formed of a material to elicit a healing response in tissue of the myocardium and deployment instruments and associated components for deploying the inserts into the wall of the myocardium. The inserts are arranged to be disposed within respective lumens or channels in the wall of the myocardium. The inserts can take various forms, e.g., be solid members, tubular members, or porous members, and may be resorbable, partially resorbable or non-resorbable. In some embodiments the inserts are arranged to be left in place within the channels in the wall of the myocardium to result in plural lumens which enable blood to flow therethrough and into contiguous capillaries. The deployment instruments are arranged to pierce the tissue of the myocardium from either the endocardium or the epicardium to insert the inserts into the myocardium, depending on the particular deployment instrument used.
    Type: Application
    Filed: January 14, 2009
    Publication date: September 17, 2009
    Inventors: Douglas G. Evans, John E. Nash
  • Publication number: 20090221868
    Abstract: The present disclosure is generally directed to surgical articles useful for implanting support members in patients. The articles disclosed herein include a support member, such as a sling for urinary incontinence, tissue anchors, filamentary elements for associating the support member with the anchors, and introducer needles for placing the anchors in a patient. The support members can also be configured for use in pelvic floor repair, such as for treating cystoceles, rectoceles, and enteroceles.
    Type: Application
    Filed: November 14, 2006
    Publication date: September 3, 2009
    Inventor: Douglas G. Evans
  • Publication number: 20090190091
    Abstract: The invention provides sparkle additives useful in producing cosmetic lenses, and lenses produced using the sparkle additives that produce a sparkle-effect when the lens is viewed on-eye. The sparkle effect is produced while, at the same time, maintaining the natural appearance of the eye.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 30, 2009
    Inventors: Dawn D. Wright, Diana Zanini, Kanda Kumar Balasubramanian, Terry L. Spaulding, Douglas G. Evans, Jeffrey H. Rothman, Karin D. McCarthy
  • Publication number: 20090110710
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant includes collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Application
    Filed: October 27, 2007
    Publication date: April 30, 2009
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Publication number: 20090043400
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant includes collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 12, 2009
    Inventors: DOUGLAS G. EVANS, Scott M. Goldman, Russell T. Kronengold
  • Publication number: 20090030528
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant includes collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may include, or have blended in, an additive, such as an osteoinductive factor, for example biocompatible ceramics and glass.
    Type: Application
    Filed: October 7, 2008
    Publication date: January 29, 2009
    Inventors: DOUGLAS G. EVANS, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7476234
    Abstract: A transmyocardial revascularization system including a plurality of inserts formed of a material to elicit a healing response in tissue of the myocardium and deployment instruments and associated components for deploying the inserts into the wall of the myocardium. The inserts are arranged to be disposed within respective lumens or channels in the wall of the myocardium. The inserts can take various forms, e.g., be solid members, tubular members, or porous members, and may be resorbable, partially resorbable or non-resorbable. In some embodiments the inserts are arranged to be left in place within the channels in the wall of the myocardium to result in plural lumens which enable blood to flow therethrough and into contiguous capillaries. The deployment instruments are arranged to pierce the tissue of the myocardium from either the endocardium or the epicardium to insert the inserts into the myocardium, depending on the particular deployment instrument used.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: January 13, 2009
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, John E. Nash
  • Publication number: 20080281148
    Abstract: An introducer device comprising: an introducer needle having a proximal end and a distal end and a handle having a needle receiving end. The handle can be adapted to receive said distal end of said introducer needle such that said introducer needle is selectably detachably coupled to said handle. A connector for attachment to an implant strip can have an arm having a hole therethrough and an introducer needle including a connection portion having a barb. It can comprise a central portion; a first arm pivotally mounted to the central portion and having a first projection and a second projection extending therefrom. A second arm can be pivotally mounted to the central portion and having a first hole and a second hole defined therein. The first and second holes can be positioned so that when the first arm pivots toward the second arm, the first and second projections are received in the first and second holes. A tube portion can extend from said central portion and define a tube aperture therein.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 13, 2008
    Inventors: Douglas G. Evans, Ken Butcher, Tracey Knapp
  • Patent number: 7419482
    Abstract: A method of vascularizing cardiac tissue using an instrument through the vascular system to an entry situs located at or adjacent the cardiac tissue is provided including providing a flowable agent comprising microspheres or microparticles having a particulate size range of 1 micron to 1 mm, introducing the agent through the instrument, imparting a particle moving force through the instrument that is generated externally to cause the microspheres or microparticles to pass directly through contiguous tissue to target cardiac tissue, the particle-moving force imparting a high pressure on the agent of several thousand psi, the microspheres or microparticles passing through the contiguous tissue without any mechanical means, whereupon the microspheres or microparticles directly enter the target cardiac tissue, forming channels in the wall of the myocardium at spaced locations and in communication with the interior of the heart, and introducing the flowable agent in the channels.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: September 2, 2008
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Patent number: 7371245
    Abstract: An introducer device comprising: an introducer needle having a proximal end and a distal end and a handle having a needle receiving end. The handle can be adapted to receive said distal end of said introducer needle such that said introducer needle is selectably detachably coupled to said handle. A connector for attachment to an implant strip can have an arm having a hole therethrough and an introducer needle including a connection portion having a barb. It can comprise a central portion; a first arm pivotally mounted to the central portion and having a first projection and a second projection extending therefrom. A second arm can be pivotally mounted to the central portion and having a first hole and a second hole defined therein. The first and second holes can be positioned so that when the first arm pivots toward the second arm, the first and second projections are received in the first and second holes. A tube portion can extend from said central portion and define a tube aperture therein.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: May 13, 2008
    Assignee: C R Bard, Inc
    Inventors: Douglas G. Evans, Ken Butcher, Tracey Knapp
  • Publication number: 20080097298
    Abstract: In an embodiment, the invention provides a catheter suitable for use in performing a procedure within a vessel, lumen or organ of a living having a distal end which is steerable, such as upon the application of compression. The catheter may be of the over the wire type, or alternatively may be a rapid exchange catheter. The catheter may provide for a rotating element which may be used to open a clogged vessel, or alternatively to provide information about adjacent tissues, such as may be generated by imaging or guiding arrangements using tissue detection systems known in the art, e.g., ultrasound, optical coherence reflectometry, etc. For rapid exchange catheters having a rotating element, there is provided an offset drive assembly to allow the rotary force to be directed from alongside the guidewire to a location coaxial to and over the guidewire.
    Type: Application
    Filed: August 18, 2006
    Publication date: April 24, 2008
    Inventors: William T. Fisher, David E. Yaeger, John E. Nash, Douglas G. Evans
  • Publication number: 20080082049
    Abstract: A guide wire exchange system including an elongate, flexible, guide wire exchange catheter capable exchanging one guide wire for another in a safe, efficient, and secured manner, where a primary guide wire, after having been advanced through the body, is to be replaced with a secondary guide wire that is to be securely advanced through the body to the target site by the advancement of the exchange catheter over the path, of the primary wire. The exchange catheter may include a securement element in order to releasably secure at least one guide wire to the exchange catheter at or near the distal end of the exchange catheter. Once secured, both the exchange catheter and the secured guide wire(s) may be advanced or retracted in a synchronous manner, without the possibility of divergence at the distal ends of the secured components as they are being manipulated by an operator.
    Type: Application
    Filed: July 12, 2006
    Publication date: April 3, 2008
    Inventors: Douglas G. Evans, John E. Nash, Steven J. Link
  • Patent number: 7311662
    Abstract: An illuminated surgical retractor for defining and illuminating a subcutaneous surgical field in the space near a vessel (such as the radial artery or the basilic vein) during a procedure for harvesting the vessel, wherein the illuminated surgical retractor includes a handle member pivotally connected at an acute angle to a first elongate section that has a non-liner shape, and includes a second elongate section releasably connected to the first elongate section, wherein a portion of the second elongate section defines an illumination input end portion, which is optically coupled to a light source to substantially illuminate the second elongate section, and further including an insertion area positioned on the proximal end portion of the first elongate section to allow the second elongate section to be inserted into the first elongate section.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: December 25, 2007
    Assignee: Technology Holding Company II
    Inventors: Donna D. Holland, John D. Pond, Jr., Douglas G. Evans
  • Patent number: 7264624
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: September 4, 2007
    Assignee: Kensey Nash Corporation
    Inventors: John E Nash, Douglas G Evans, David M Hoganson
  • Patent number: 7261689
    Abstract: An illuminated surgical retractor for defining and illuminating a subcutaneous surgical field in the space near a vessel (such as the saphenous vein or radial artery) during a procedure for harvesting the vessel, wherein the illuminated surgical retractor includes a handle member pivotally connected at an acute angle to a first elongate section that has an at least partially tapered width, and includes a second elongate section releasably connected to the first elongate section, wherein a portion of the second elongate section defines an illumination input end portion, which is optically coupled to a light source to substantially illuminate the second elongate section, and further including an insertion area positioned on the proximal end portion of the first elongate section to allow the second elongate section to be inserted into the first elongate section.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: August 28, 2007
    Assignee: Teleflex Medical Incorporated
    Inventors: Donna D. Holland, Douglas G. Evans
  • Patent number: 7241316
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant comprising collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 10, 2007
    Inventors: Douglas G Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7235107
    Abstract: An implantable material for deployment in select locations or select tissue for tissue regeneration is disclosed. The implant comprises collagen, ceramics, and or other bio-resorbable materials or additives, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: June 26, 2007
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7166133
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant comprising collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: January 23, 2007
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7156880
    Abstract: An implantable material for deployment in select locations or select tissue for tissue regeneration is disclosed. The implant comprises collagen, ceramics, and or other bio-resorbable materials or additives, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: January 2, 2007
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7049348
    Abstract: Devices and processes (e.g., improved Plasticized Melt Flow processes (PMF) or improved Phase Separation Polymer Concentration (PSPC), etc.) used to make resorbable and non-resorbable structures for treating and/or healing of tissue defects are disclosed. Among the advantages of using these improved processes are the preservation of molecular weight and the broadening of the processing conditions for temperature sensitive polymers and therapies This reduction in processing temperature, pressure and time can help to preserve the molecular weight and/or integrity of the final product or any additive incorporated therein. The present invention relates to an improved porous implant wherein the pores of the implant present a second modeling material on their surfaces. This second material provides a textured or roughened face to the internal surfaces of pores.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: May 23, 2006
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G Evans, Jeffrey C Kelly, Todd M DeWitt