Patents by Inventor Douglas M. Gill

Douglas M. Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230320236
    Abstract: A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit.
    Type: Application
    Filed: December 9, 2022
    Publication date: October 5, 2023
    Inventors: Douglas M. Gill, Martin O. Sandberg, Vivekananda P. Adiga, Jason S. Orcutt, Jerry M. Chow
  • Patent number: 11552236
    Abstract: A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 10, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas M. Gill, Martin O. Sandberg, Vivekananda P. Adiga, Jason S. Orcutt, Jerry M. Chow
  • Publication number: 20210234085
    Abstract: A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Douglas M. Gill, Martin O. Sandberg, Vivekananda P. Adiga, Jason S. Orcutt, Jerry M. CHOW
  • Publication number: 20210026066
    Abstract: Photonic circuits are disclosed having an efficient optical power distribution network. Laser chips (InP) having different wavelengths are flip-chip assembled near the center of a silicon photonic chip. Each InP die has multiple optical lanes, but a given die has only one wavelength. Waveguides formed in the photonic chip are optically connected to the lanes, and fan out to form multiple waveguide sets, where each waveguide set has one of the waveguides from each of the different wavelengths, i.e., one waveguide from each InP die. The waveguide network is optimized to minimize the number of crossings that any given waveguide may have, and no waveguide having a particular wavelength crosses another waveguide of the same wavelength. The unique arrangements of light sources and waveguides allows the use of a smaller number of more intense laser sources, particularly in applications such as performance-optimized datacenters where liquid cooling systems may be leveraged.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Inventors: Tymon Barwicz, Douglas M. Gill, William M. Green, Jason S. Orcutt, Jessie C. Rosenberg, Eugen Schenfeld, Chi Xiong
  • Patent number: 10895682
    Abstract: Photonic circuits are disclosed having an efficient optical power distribution network. Laser chips (InP) having different wavelengths are flip-chip assembled near the center of a silicon photonic chip. Each InP die has multiple optical lanes, but a given die has only one wavelength. Waveguides formed in the photonic chip are optically connected to the lanes, and fan out to form multiple waveguide sets, where each waveguide set has one of the waveguides from each of the different wavelengths, i.e., one waveguide from each InP die. The waveguide network is optimized to minimize the number of crossings that any given waveguide may have, and no waveguide having a particular wavelength crosses another waveguide of the same wavelength. The unique arrangements of light sources and waveguides allows the use of a smaller number of more intense laser sources, particularly in applications such as performance-optimized datacenters where liquid cooling systems may be leveraged.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 19, 2021
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Douglas M. Gill, William M. Green, Jason S. Orcutt, Jessie C. Rosenberg, Eugen Schenfeld, Chi Xiong
  • Patent number: 10203525
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 10197819
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 10088697
    Abstract: A dual-use thermal and electro-optic modulator. A thermal adjustment hardware set and an electric-field adjustment hardware set adjust the thermal and electrostatic properties of a common waveguide area. The hardware sets are electrically coupled. Signals for each type of modulation are conducted to the waveguide through a shared portion of a communication medium.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: October 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Jonathan E. Proesel, Jessie C. Rosenberg
  • Publication number: 20180143462
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 24, 2018
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 9946099
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong
  • Publication number: 20170255031
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 7, 2017
    Inventors: Douglas M. Gill, Chi Xiong
  • Publication number: 20170248805
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 9720300
    Abstract: A method and apparatus for controlling operation of an electro-optic modulator is disclosed. A first intensity of light is obtained at an input to the electro-optic modulator. A second intensity of light is obtained at an output of the electro-optic modulator. A difference between the obtained first intensity and the obtained second intensity is used to control a biasing of a modulator transfer function of the electro-optic modulator to control the electro-optic modulator.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 1, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas M. Gill, Jonathan E. Proesel
  • Patent number: 9709872
    Abstract: A method and apparatus for controlling operation of an electro-optic modulator is disclosed. A first intensity of light is obtained at an input to the electro-optic modulator. A second intensity of light is obtained at an output of the electro-optic modulator. A difference between the obtained first intensity and the obtained second intensity is used to control a biasing of a modulator transfer function of the electro-optic modulator to control the electro-optic modulator.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: July 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas M. Gill, Jonathan E. Proesel
  • Patent number: 9684191
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong
  • Publication number: 20170131576
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 9575338
    Abstract: A method of modulating an optical input with a radio frequency (RF) signal, an interdigitated modulator, and an electro-optical modulator including the interdigitated modulator are described. The method includes splitting the optical input to a first optical input and a second optical input, traversing a first region and a second region, respectively, with the first optical input and the second optical input, and modulating the first optical input with the RF signal in the first region. The method also includes controlling propagation speed of the RF signal in the first region, controlling RF line impedance in the first region, and controlling an optical loss of the first optical input in the first region.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Douglas M. Gill
  • Patent number: 9575339
    Abstract: A method of modulating an optical input with a radio frequency (RF) signal, an interdigitated modulator, and an electro-optical modulator including the interdigitated modulator are described. The method includes splitting the optical input to a first optical input and a second optical input, traversing a first region and a second region, respectively, with the first optical input and the second optical input, and modulating the first optical input with the RF signal in the first region. The method also includes controlling propagation speed of the RF signal in the first region, controlling RF line impedance in the first region, and controlling an optical loss of the first optical input in the first region.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Douglas M. Gill
  • Publication number: 20160266464
    Abstract: A method of modulating an optical input with a radio frequency (RF) signal, an interdigitated modulator, and an electro-optical modulator including the interdigitated modulator are described. The method includes splitting the optical input to a first optical input and a second optical input, traversing a first region and a second region, respectively, with the first optical input and the second optical input, and modulating the first optical input with the RF signal in the first region. The method also includes controlling propagation speed of the RF signal in the first region, controlling RF line impedance in the first region, and controlling an optical loss of the first optical input in the first region.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 15, 2016
    Inventor: Douglas M. Gill
  • Publication number: 20160266416
    Abstract: A method of modulating an optical input with a radio frequency (RF) signal, an interdigitated modulator, and an electro-optical modulator including the interdigitated modulator are described. The method includes splitting the optical input to a first optical input and a second optical input, traversing a first region and a second region, respectively, with the first optical input and the second optical input, and modulating the first optical input with the RF signal in the first region. The method also includes controlling propagation speed of the RF signal in the first region, controlling RF line impedance in the first region, and controlling an optical loss of the first optical input in the first region.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 15, 2016
    Inventor: Douglas M. Gill