Patents by Inventor Doyle E. Bennett

Doyle E. Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150118766
    Abstract: A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu
  • Publication number: 20150118765
    Abstract: In one aspect, a method of controlling polishing includes receiving a measurement of an initial thickness of a conductive film on a first substrate prior to polishing the first substrate from an in-line or stand-alone monitoring system, polishing one or more substrates in a polishing system, the one or more substrates including the first substrate, during polishing of the one or more substrates, monitoring the one or more substrates with an eddy current monitoring system to generate a first signal, determining a starting value of the first signal for a start of polishing of the first substrate, determining a gain based on the starting value and the measurement of the initial thickness, for at least a portion of the first signal collected during polishing of at least one substrate of the one or more substrates, and calculating a second signal based on the first signal and the gain.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu
  • Publication number: 20140242883
    Abstract: A polishing apparatus includes a carrier head configured to hold a wafer in a first plane, the wafer having a perimeter and a fiducial, a drive shaft having an axis perpendicular to the first plane and configured to rotate the carrier head about the axis, a light source configured to direct light onto an outer face of the wafer at a position adjacent the perimeter of the wafer; a detector configured to detect the light collected from the wafer while the drive shaft rotates the carrier head and the wafer; and a controller configured to receive a first signal indicating an angular position of the drive shaft and receive a second signal from the detector, the controller configured to determine based on the first signal and the second signal an angular position of the fiducial with respect the carrier head.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Cherian, Jeffrey Drue David, Boguslaw A. Swedek, Thomas H. Osterheld, Jun Qian, Thomas Li, Doyle E. Bennett, David J. Lischka, Steven M. Zuniga
  • Publication number: 20140242879
    Abstract: A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Benjamin Cherian, Dominic J. Benvegnu, Boguslaw A. Swedek, Thomas H. Osterheld, Jun Qian, Thomas Li, Doyle E. Bennett, David J. Lischka, Steven M. Zuniga
  • Publication number: 20140242881
    Abstract: A method of controlling a polishing operation is described. A controller stores an optical model for a layer stack having a plurality of layers and a plurality of input parameters including a first parameter and a second parameter. The controller stores data defining a plurality of default values for the first parameter and measures an optical property of a substrate and generates a second value. Using the optical model and the second value and iterating over the first values, a number of reference spectra are calculated. A spectrum is measured and the measured spectrum is matched to the reference spectra and the best matched reference spectrum is determined. The first value of the best matched reference spectrum is determined and is used to adjust a polishing endpoint or a polishing parameter of a polishing apparatus.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Inventors: Jeffrey Drue David, Gregory E. Menk, Doyle E. Bennett, Jun Qian, Sivakumar Dhandapani, Benjamin Cherian, Thomas H. Osterheld, Boguslaw A. Swedek
  • Publication number: 20140141696
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 22, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D Ambra, Jagan Rangarajan
  • Publication number: 20140141695
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 22, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan
  • Publication number: 20140127971
    Abstract: A method of chemical mechanical polishing a substrate includes polishing a layer on the substrate at a polishing station, monitoring the layer during polishing at the polishing station with an in-situ monitoring system, the in-situ monitoring system monitoring an elongated region and generating a measured signal, computing an angle between a primary axis of the elongated region and a tangent to an edge of the substrate, modifying the measured signal based on the angle to generate a modified signal, and at least one of detecting a polishing endpoint or modifying a polishing parameter based on the modified signal.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 8, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Tzu-Yu Liu, Ingemar Carlsson, Hassan G. Iravani, Boguslaw A. Swedek, Wen-Chiang Tu, Doyle E. Bennett
  • Publication number: 20140113524
    Abstract: A method of controlling polishing includes polishing a substrate, monitoring the substrate during polishing with an in-situ spectrographic monitoring system to generate a sequence of measured spectra, selecting less than all of the measured spectra to generate a sequence of selected spectra, generating a sequence of values from the sequence of selected spectra, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the sequence of values.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Inventors: Jun Qian, Sivakumar Dhandapani, Benjamin Cherian, Thomas H. Osterheld, Jeffrey Drue David, Gregory E. Menk, Boguslaw A. Swedek, Doyle E. Bennett
  • Patent number: 8535121
    Abstract: A carrier head for chemical mechanical polishing that has a base, a mounting assembly connected to the base having a surface for contacting a substrate, and a retaining ring secured to the base. The retaining ring can include perfluoroalkoxy, polyetherketoneketone, polybenzimidazole, a semi-crystalline thermoplastic polyester, or a long molecular chain molecule produced from poly-paraphenylene terephthalamide.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: September 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Doyle E. Bennett, Andrew J. Nagengast, Hung Chih Chen
  • Publication number: 20130157549
    Abstract: A carrier head for chemical mechanical polishing that has a base, a mounting assembly connected to the base having a surface for contacting a substrate, and a retaining ring secured to the base. The retaining ring can include perfluoroalkoxy, polyetherketoneketone, polybenzimidazole, a semi-crystalline thermoplastic polyester, or a long molecular chain molecule produced from poly-paraphenylene terephthalamide.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Inventors: Doyle E. Bennett, Andrew J. Nagengast, Hung Chih Chen
  • Patent number: 8465342
    Abstract: A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: June 18, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Alain Duboust, Doyle E. Bennett
  • Patent number: 8408965
    Abstract: In-situ monitoring during processing of a substrate includes processing a conductive film on a substrate in a semiconductor processing apparatus and generating a signal from an eddy current sensor during processing. The signal includes a first portion generated when the eddy current sensor is adjacent the substrate, a second portion generated when the eddy current sensor is adjacent a metal body and not adjacent the substrate, and a third portion generated when the eddy current sensor is adjacent neither the metal body nor the substrate. The second portion of the signal is compared to the third portion of the signal and a gain is determined based at least on a result of the comparing, and the first portion of the signal is multiplied by the gain to generate an adjusted signal.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: April 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Doyle E. Bennett, Thomas H. Osterheld
  • Patent number: 8393940
    Abstract: A polishing pad includes a polishing layer having a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The solid light-transmitting window has an upper portion with a first lateral dimension and a lower portion with a second lateral dimension that is smaller than the first lateral dimension. A top surface of the solid light-transmitting window coplanar with the polishing surface and a bottom surface of the solid light-transmitting window coplanar with a lower surface of the adhesive layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: March 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A Swedek, Doyle E Bennett, Dominic J Benvegnu
  • Patent number: 8376813
    Abstract: A carrier head for chemical mechanical polishing that has a base, a mounting assembly connected to the base having a surface for contacting a substrate, and a retaining ring secured to the base. The retaining ring can include perfluoroalkoxy, polyetherketoneketone, polybenzimidazole, a semi-crystalline thermoplastic polyester, or a long molecular chain molecule produced from poly-paraphenylene terephthalamide.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Doyle E. Bennett, Andrew J. Nagengast, Hung Chih Chen
  • Patent number: 8287330
    Abstract: A chemical mechanical polishing pad is described. A chemical mechanical polishing pad has an outer layer that includes a polishing surface, a first thinned region defined by a recess on a bottom surface of the pad, a first thick region surrounding the first thinned region, a second thinned region surrounding the first thick region, and a second thick region surrounding the second thinned region. The first thick region is not vertically extendable. The second thinned region defines one or more flexure mechanisms configured to make the first thinned region and the first thick region movable relative to the second thick region in a direction parallel or substantially parallel to the polishing surface.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: October 16, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Doyle E. Bennett, Boguslaw A. Swedek, David J. Lischka
  • Publication number: 20120258649
    Abstract: A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 11, 2012
    Inventors: Jimin Zhang, Alain Duboust, Doyle E. Bennett
  • Publication number: 20120227903
    Abstract: Methods and apparatus for automatic gain control. A film on a substrate is polished by a chemical mechanical polisher that includes a polishing pad and an in-situ monitoring system. The polishing pad includes a first portion, and the in-situ monitoring system includes a light source and a light detector. The light source emits light, and light emitted from the light source is directed through the first portion and to a surface of the film being polished. Light reflecting from the surface of the film being polished and passing through the first portion is received at the light detector. An electronic signal is generated based on the light received at the light detector. When the electronic signal is evaluated not to satisfy one or more constraints, a gain for the light detector is adjusted so that the electronic signal would satisfy the one or more constraints.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Doyle E. Bennett
  • Patent number: 8187977
    Abstract: Methods and apparatus for automatic gain control. A film on a substrate is polished by a chemical mechanical polisher that includes a polishing pad and an in-situ monitoring system. The polishing pad includes a first portion, and the in-situ monitoring system includes a light source and a light detector. The light source emits light, and light emitted from the light source is directed through the first portion and to a surface of the film being polished. Light reflecting from the surface of the film being polished and passing through the first portion is received at the light detector. An electronic signal is generated based on the light received at the light detector. When the electronic signal is evaluated not to satisfy one or more constraints, a gain for the light detector is adjusted so that the electronic signal would satisfy the one or more constraints.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: May 29, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Doyle E. Bennett
  • Patent number: 8157614
    Abstract: A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: April 17, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Alain Duboust, Doyle E. Bennett