Patents by Inventor Drew G. Doblar

Drew G. Doblar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6462593
    Abstract: A phase-locked loop circuit and method for providing for compensation for an offset. A phase-locked loop circuit comprises a phase detector, a compensation circuit, a loop filter, and a VCO. The phase detector is coupled to receive a first input signal and a second input signal. The phase detector is configured to output one or more of a plurality of output signals indicative of a difference between the first input signal and the second input signal. The compensation circuit is coupled to receive the output signals and to reduce a voltage offset between the output signals. The compensation circuit is further configured to provide a plurality of compensated output signals. The loop filter is coupled to receive the compensated control signals. The loop filter is configured to output a first control signal. The VCO is coupled to receive the first control signal and to output the second input signal based on the first control signal.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: October 8, 2002
    Assignee: Sun Microsystems, Inc.
    Inventors: Chung-Hsiao R. Wu, Drew G. Doblar
  • Patent number: 6462570
    Abstract: A test breakout board using blind vias to eliminate stubs. The test breakout board includes a printed circuit board (PCB), having a first set of contact pads on one side and a second set of contact pads which are directly opposite the first set of contact pads on it's other side. Each pad in the first set of contact pads is connected to a corresponding pad in the second set of contact pads through a pair of blind vias, a pair of signal traces and a through-hole via. Each of the through-hole vias is connected to a corresponding contact pin in a test connector. The test connector provides an interface to test equipment such as a logic analyzer or an oscilloscope. The test breakout board may include a test socket for holding a device-under-test (DUT), such as a microprocessor or an application specific integrated circuit (ASIC) chip. Additionally, the breakout board may also include an electrical interface adapter, which mechanically resembles the DUT.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: October 8, 2002
    Assignee: Sun Microsystems, Inc.
    Inventors: William J. Price, Drew G. Doblar
  • Patent number: 6441656
    Abstract: A method for dividing a high frequency clock signal for analysis of all clock edges has been developed. The method includes receiving a high frequency clock signal and dividing it up into multiple phases that represent respective edges of the clock signal. The initial phases are generated by the divider with each subsequent phase lagging its preceding phase by one clock cycle. Additional subsequent phases are generated by inverting corresponding initial phases.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: August 27, 2002
    Assignee: Sun Microsystems, Inc.
    Inventors: Gin S. Yee, Drew G. Doblar
  • Publication number: 20020075982
    Abstract: A system and method for switching between input clock signals from different clock sources without losing lock by providing a supplemental correction signal to the loop filter in a phase locked loop (PLL) circuit. The phase detector includes a supplemental correction pulse generator configured to offset, at least partially, the effects of losing an input clock signal from a first clock source failure. The phase detector is coupled to receive the input clock signal and a feedback signal. The phase detector outputs a phase error signal indicative of a comparison between the input clock signal and the feedback signal. The loop filter is coupled to receive the phase error signal and to output an error correction signal. A voltage controlled oscillator is coupled to receive the error correction signal and to generate the output signal of the PLL, with the feedback signal indicative of the output signal. Switching logic is coupled to monitor the input clock signal from the first clock source for a failure.
    Type: Application
    Filed: November 26, 2001
    Publication date: June 20, 2002
    Applicant: Sun Microsystems, Inc.
    Inventor: Drew G. Doblar
  • Publication number: 20020040446
    Abstract: A computer system is described including a processor for executing instructions, a memory module for storing instructions and data, and a memory controller coupled between the processor and the memory module. The memory controller provides a differential clock signal and memory access signals which are routed to the memory module. The memory module includes multiple memory devices coupled to a clock buffer. The clock buffer produces a new single-ended “regenerated” clock signal from the differential clock signal. The clock buffer includes an input buffer circuit and a phase-locked loop (PLL). The input buffer circuit receives the differential clock signal from the memory controller and produces a single-ended reference clock signal from the differential clock signal. The PLL produces the regenerated clock signal substantially at the same frequency of, and in synchronization with, the single-ended reference clock signal produced by the input buffer circuit.
    Type: Application
    Filed: October 26, 2001
    Publication date: April 4, 2002
    Applicant: Sun Microsystems, Inc.
    Inventors: Drew G. Doblar, Han Y. Ko
  • Patent number: 6359945
    Abstract: A system and method for switching between input clock signals from different clock sources without losing lock by providing a supplemental correction signal to the loop filter in a phase locked loop (PLL) circuit. The phase detector includes a supplemental correction pulse generator configured to offset, at least partially, the effects of losing an input clock signal from a first clock source failure. The phase detector is coupled to receive the input clock signal and a feedback signal. The phase detector outputs a phase error signal indicative of a comparison between the input clock signal and the feedback signal. The loop filter is coupled to receive the phase error signal and to output an error correction signal. A voltage controlled oscillator is coupled to receive the error correction signal and to generate the output signal of the PLL, with the feedback signal indicative of the output signal. Switching logic is coupled to monitor the input clock signal from the first clock source for a failure.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: March 19, 2002
    Assignee: Sun Microsystems, Inc.
    Inventor: Drew G. Doblar
  • Patent number: 6338144
    Abstract: A computer system is described including a processor for executing instructions, a memory module for storing instructions and data, and a memory controller coupled between the processor and the memory module. The memory controller provides a differential clock signal and memory access signals which are routed to the memory module. The memory module includes multiple memory devices coupled to a clock buffer. The clock buffer produces a new single-ended “regenerated” clock signal from the differential clock signal. The clock buffer includes an input buffer circuit and a phase-locked loop (PLL). The input buffer circuit receives the differential clock signal from the memory controller and produces a single-ended reference clock signal from the differential clock signal. The PLL produces the regenerated clock signal substantially at the same frequency of, and in synchronization with, the single-ended reference clock signal produced by the input buffer circuit.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: January 8, 2002
    Assignee: Sun Microsystems, Inc.
    Inventors: Drew G. Doblar, Han Y. Ko
  • Publication number: 20010013800
    Abstract: A phase-locked loop circuit and method for providing for compensation for an offset. A phase-locked loop circuit comprises a phase detector, a compensation circuit, a loop filter, and a VCO. The phase detector is coupled to receive a first input signal and a second input signal. The phase detector is configured to output one or more of a plurality of output signals indicative of a difference between the first input signal and the second input signal. The compensation circuit is coupled to receive the output signals and to reduce a voltage offset between the output signals. The compensation circuit is further configured to provide a plurality of compensated output signals. The loop filter is coupled to receive the compensated control signals. The loop filter is configured to output a first control signal. The VCO is coupled to receive the first control signal and to output the second input signal based on the first control signal.
    Type: Application
    Filed: July 22, 1999
    Publication date: August 16, 2001
    Inventors: CHUNG-HSIAO R. WU, DREW G. DOBLAR
  • Publication number: 20010013100
    Abstract: A computer system is described including a processor for executing instructions, a memory module for storing instructions and data, and a memory controller coupled between the processor and the memory module. The memory controller provides a differential clock signal and memory access signals which are routed to the memory module. The memory module includes multiple memory devices coupled to a clock buffer. The clock buffer produces a new single-ended “regenerated” clock signal from the differential clock signal. The clock buffer includes an input buffer circuit and a phase-locked loop (PLL). The input buffer circuit receives the differential clock signal from the memory controller and produces a single-ended reference clock signal from the differential clock signal. The PLL produces the regenerated clock signal substantially at the same frequency of, and in synchronization with, the single-ended reference clock signal produced by the input buffer circuit.
    Type: Application
    Filed: February 19, 1999
    Publication date: August 9, 2001
    Inventors: DREW G. DOBLAR, HAN Y. KO
  • Patent number: 6194969
    Abstract: A system and method for providing master and slave phase-aligned clocks. Upon a failure of a master clock signal, the system switches over to a slave clock signal in phase alignment with the master clock signal. The master clock signal is from a first clock source, while the slave clock signal is from a second clock source. The second clock source comprises a phase locked loop (PLL) including a switch, which is coupled to selectively provide a control signal to a voltage controlled oscillator (VCO). The switch may also provide a reference control voltage to the VCO. The first clock source may be on a first clock board, and the second clock source may be on a second clock board. The clock boards are preferably hot swappable. The first clock board may be removed from the system, such as upon a failure, and a third clock board placed in the system.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: February 27, 2001
    Assignee: Sun Microsystems, Inc.
    Inventor: Drew G. Doblar
  • Patent number: 5970070
    Abstract: A method, in a host adapter circuit configured for coupling a host electronic device with one of a fiber channel loop and a point-to-point communication channel, for receiving data at the host adapter circuit from one of the fiber channel loop and the point-to-point communication channel. The method includes providing a selectable control signal configured for indicating whether the host adapter circuit is coupled to the fiber channel loop or the point-to-point communication channel. The method further includes providing a front-end receive circuit. The front-end receive circuit is configured for coupling with an input data port. The input data port represents one of the fiber channel loop and the point-to-point communication channel. The method also includes coupling the front-end receive circuit with the selectable control signal.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: October 19, 1999
    Assignee: Sun Microsystems, Inc.
    Inventors: Kin M. Ho, David C. Banks, John C. Schell, Tai Quan, Teshager Tesfaye, Kenneth A. Schmahl, Matthew J. Tedone, Drew G. Doblar