Patents by Inventor Du Li

Du Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210003307
    Abstract: This disclosure discloses a communication implementation method and device for air conditioning units, a storage medium and a processor. The method includes: acquiring a channel state of a current power line carrier channel used between units in an air conditioning system; and determining whether to switch the channel between the units from the current power carrier channel to a next power carrier channel according to the channel state, wherein the next power carrier channel is any one of power carrier channels other than the current power carrier channel in the air conditioning system.
    Type: Application
    Filed: December 14, 2018
    Publication date: January 7, 2021
    Inventors: Jie Tang, Tieying Ye, Weiyou Yu, Wencan Wang, Zhongwen Deng, Quanzhou Liu, Qiang Huang, Du Yang, Zhongzheng Li
  • Patent number: 10871533
    Abstract: A power supply apparatus for a magnetic resonance apparatus has a power supply terminal module with a power supply unit and a reference voltage pull-down unit, and a load terminal module with a voltage comparator connected to a load power-feed terminal, which compares a nominal voltage and an actual voltage of the load power-feed terminal. A counter begins counting when the actual voltage is lower than the nominal voltage, and keeps its count unchanged when the actual voltage is equal to the nominal voltage, and emits a signal corresponding to the count to a digital-to-analog converter, connected to a phase inverter, which converts the digital signal to a positive analog voltage. A phase inverter is connected to an output voltage reference terminal of the power supply unit, and inverts the phase of the analog voltage to produce a negative analog voltage that compensates voltage drop loss on a cable between the power supply and the load power-feed terminal.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 22, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Shu Du, Wen Ming Li, JianMin Wang, Tong Tong
  • Publication number: 20200387969
    Abstract: A method for estimating an expected volatility for financial instruments that are quoted in spread terms but which trade with an upfront and a fixed coupon may include a computer processor: (1) selecting a plurality of options, each option having a different option expiry; (2) for each option expiry, calculating a corresponding forward index level in a price term; (3) selecting a strike price for which an absolute difference between a receiver price and a payer price is smallest; (4) extracting and grouping a plurality of traded receivers having spread strike prices that are lower than the strike price, and payers having spread strike prices greater than the strike price; (5) calculating an expected strike price for each grouped option; (6) calculating an option notional for each of the plurality of options; (7) calculating a fixed expiry VTRAC-X volatility index; and (8) interpolating a fixed time-to-expiry VTRAC-X volatility index.
    Type: Application
    Filed: October 27, 2016
    Publication date: December 10, 2020
    Inventors: Du Li, Moritz Duembgen, Saul Doctor, Danny White
  • Patent number: 10740944
    Abstract: Examples of systems and methods for augmented facial animation are generally described herein. A method for mapping facial expressions to an alternative avatar expression may include capturing a series of images of a face, and detecting a sequence of facial expressions of the face from the series of images. The method may include determining an alternative avatar expression mapped to the sequence of facial expressions, and animating an avatar using the alternative avatar expression.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 11, 2020
    Assignee: Intel Corporation
    Inventors: Yikai Fang, Yangzhou Du, Qiang Eric Li, Xiaofeng Tong, Wenlong Li, Minje Park, Myung-Ho Ju, Jihyeon Kate Yi, Tae-Hoon Pete Kim
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10580964
    Abstract: The present invention relates to a memory device including a substrate and a lower electrode, buffer layer, seed layer, Magnetic Tunnel Junction (MTJ), capping layer, synthetic antiferromagnetic layer, and upper electrode formed on the substrate.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 3, 2020
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Jea Gun Park, Du Yeong Lee, Song Hwa Hong, Jin Young Choi, Seung Eun Lee, Junli Li
  • Publication number: 20200049623
    Abstract: The invention discloses a NIR method for fatty acid content of oilseeds, including: selection of oilseed samples, and analyzing the oilseed samples by an near infrared spectrometer to obtain NIR spectra; preprocessing of NIR spectra and establishment of a NIR spectral database of oilseeds; establishment of a fatty acid database of oilseeds based on gas chromatography; establishment of prediction model of fatty acids in oilseeds; acquiring NIR spectrum of a sample to be tested by the near infrared spectrometer, and importing the preprocessed NIR spectrum into the prediction model of fatty acids to obtain the predicted fatty acid content of the tested sample. The method is simple and rapid to operate and is non-destructive, and the detection time of the sample is greatly shortened and the detection cost is reduced.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 13, 2020
    Inventors: Liangxiao ZHANG, Peiwu LI, Zhe YUAN, Du WANG, Xuefang WANG, Wen ZHANG, Qi ZHANG
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10540800
    Abstract: Examples of systems and methods for non-facial animation in facial performance driven avatar system are generally described herein. A method for facial gesture driven body animation may include capturing a series of images of a face, and computing facial motion data for each of the images in the series of images. The method may include identifying an avatar body animation based on the facial motion data, and animating a body of an avatar using the avatar body animation.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: January 21, 2020
    Assignee: Intel Corporation
    Inventors: Xiaofeng Tong, Qiang Eric Li, Yangzhou Du, Wenlong Li, Johnny C. Yip
  • Patent number: 10533109
    Abstract: The invention relates to a high shear stable aqueous fluoropolymer coating composition, preferably using polyvinylidene fluoride (PVDF), such as KYNAR® PVDF, suitable for high performance coating applications. The composition is based on a high shear stable fluoropolymer emulsion having small particle size, blended with an acrylic polymer additive. The use of this composition allows high bake PVDF water-base coatings which can be applied on variety of substrates such as metal or ceramic surfaces, and in the impregnation of textiles, glass, carbon or aramid fibers, etc. The dry coating formed from the coating composition of the invention exhibits improved gloss, crack resistance, chemical resistance, hot dirt pick up resistance and other improved properties.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 14, 2020
    Assignee: Arkema Inc.
    Inventors: Min Zheng, Ramin Amin-Sanayei, Qing Li, An Du
  • Publication number: 20190369177
    Abstract: A power supply apparatus for a magnetic resonance apparatus has a power supply terminal module with a power supply unit and a reference voltage pull-down unit, and a load terminal module with a voltage comparator connected to a load power-feed terminal, which compares a nominal voltage and an actual voltage of the load power-feed terminal. A counter begins counting when the actual voltage is lower than the nominal voltage, and keeps its count unchanged when the actual voltage is equal to the nominal voltage, and emits a signal corresponding to the count to a digital-to-analog converter, connected to a phase inverter, which converts the digital signal to a positive analog voltage. A phase inverter is connected to an output voltage reference terminal of the power supply unit, and inverts the phase of the analog voltage to produce a negative analog voltage that compensates voltage drop loss on a cable between the power supply and the load power-feed terminal.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 5, 2019
    Applicant: Siemens Shenzhen Magnetic Resonance Ltd.
    Inventors: Shu Du, Wen Ming Li, JianMin Wang, Tong Tong
  • Patent number: 10488476
    Abstract: An RF choke resonator assembly has a cylindrical magnetic field shielding case with openings at two ends thereof, a magnetic field shielding plate and a winding skeleton, and a capacitive plate inside the case. The magnetic field shielding plate closes the opening at one end of the case, and has a through-hole allowing a cable to pass there through. The cable is wound on the winding skeleton. The capacitive plate is disposed opposite the magnetic field shielding plate in the case, separated therefrom by the winding skeleton, and is electrically connected to the case in a closed manner. The capacitive plate has a through-hole allowing the cable to pass there through. The capacitive plate is remote from the other opening case end opposite the opening closed by the magnetic field shielding plate. An insulation space is formed at that other opening, having a length in the axial direction greater than or equal to one quarter of the length of the magnetic field shielding case in the axial direction.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: November 26, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Shu Du, Jun You, Wen Ming Li, JianMin Wang
  • Patent number: 10459556
    Abstract: A touch display panel and a display device are disclosed. The touch display panel includes a first substrate, a second substrate, a first solder pad, a second solder pad and a touch sensing layer. The first substrate is defined with a display region and a non-display region. In the present invention, the first solder pad is disposed at a substrate having the touch sensing layer. That is, the first substrate is provided with a non-display region having the second solder pad. A wider black masking region for the first solder pad and corresponding trace region is not required so that an edge frame of the display device can be reduced, which is beneficial for a narrow-frame design of the display device.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: October 29, 2019
    Assignee: Wuhan China Star Optoelectronics Technology Co., Ltd
    Inventors: Yuejun Tang, De-Jiun Li, Wenqing Song, Tsung-Ying Yang, Mingfei Du
  • Publication number: 20190304155
    Abstract: Examples of systems and methods for augmented facial animation are generally described herein. A method for mapping facial expressions to an alternative avatar expression may include capturing a series of images of a face, and detecting a sequence of facial expressions of the face from the series of images. The method may include determining an alternative avatar expression mapped to the sequence of facial expressions, and animating an avatar using the alternative avatar expression.
    Type: Application
    Filed: October 26, 2018
    Publication date: October 3, 2019
    Inventors: Yikai Fang, Yangzhou Du, Qiang Eric Li, Xiaofeng Tong, Wenlong Li, Minje Park, Myung-Ho Ju, Jihyeon Kate Yi, Tae-Hoon Pete Kim
  • Patent number: 10367677
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 30, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng
  • Patent number: 10324709
    Abstract: The present invention relates to an apparatus and a method for validating application deployment topology in a cloud environment. There is provided an apparatus for validating application deployment topology in a cloud environment comprising: a topology skeleton generator configured to generate, based on multiple VMs and script packages running on the VMs created by a user and required to deploy an application as well as running order of script packages and data dependency between script packages set by the user, a topology skeleton that comprises at least scripts of script packages of respective VMs and running order of the script packages; and a simulator configured to simulate a runtime environment in the cloud environment at the apparatus, thereby validating the running order and data dependency with respect to the topology skeleton, wherein the simulator is installed in the apparatus by using a simulator installation package retrieved from the cloud environment.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Geng Du, Chong Feng, Wei Feng Li, Xin Li, Qi Liu, Qiang Wang, Yue Wang, Chunxiao Zhang
  • Publication number: 20190162658
    Abstract: A method for multivariate adulteration detection on an edible oil includes (1) construction of a model: S1, acquiring near-infrared spectra of edible oils; S2, establishing a near-infrared spectral database of the edible oils; S3, establishing a multivariate adulteration detection model for a type of edible oil; and (2) application of the model: acquiring spectra of a sample to be tested according to the near-infrared spectral signal acquisition method in step S1, preprocessing the obtained near-infrared spectra by using the method in step S2 to obtain near-infrared spectral data of the sample, and determining the authenticity of the sample to be tested by using the multivariate adulteration detection model for the edible oil established in step S3. The method is simple and rapid in operation, can effectively and rapidly screen the authenticity of an edible vegetable oil, and has strong practicability.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Inventors: Liangxiao ZHANG, Peiwu LI, Zhe YUAN, Du WANG, Xuefang WANG, Wen ZHANG, Qi ZHANG
  • Patent number: 10284619
    Abstract: Exemplary methods for performing distributed data aggregation include receiving Internet Protocol (IP) traffic from only a first portion of the network. The methods further include utilizing a big data tool to generate a summary of the IP traffic from the first portion of the network, wherein a summary of IP traffic from a second portion of the network is generated by a second network device utilizing its local big data tool. The methods include sending the summary of the IP traffic of the first portion of the network to the third network device, causing the third network device to utilize its local big data tool to generate a summary of the IP traffic of the first and second portion of the network based on the summaries received from the first and second network devices, thereby allowing the IP traffic in the network to be characterized in a distributed manner.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: May 7, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Du Li, Ying Zhang