Patents by Inventor Dung Le

Dung Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240331481
    Abstract: The present invention enables determination as to whether a banknote 100 is to be discharged even when only the feature quantity of a portion of the banknote is acquired at the time of discharging the banknote in a case in which a transport route length L1 from a reading position 18a of an optical recognition sensor 18 to an inlet/outlet 12 as a banknote discharge port is shorter than a total length LA of the banknote in a transport direction. At the time of discharging the banknote 100 already authenticated, a control unit 200 judges the type (denomination) of the banknote on the basis of a feature quantity of a reading target 103 that passes the optical recognition sensor 18 before a leading end 100a of the banknote 100 transported in a discharge direction protrudes to outside the device from the inlet/outlet 12.
    Type: Application
    Filed: June 7, 2022
    Publication date: October 3, 2024
    Applicant: JAPAN CASH MACHINE CO., LTD.
    Inventors: Hiroyuki SUZUKI, Tuan Dung LE, Van Huong NGUYEN
  • Publication number: 20240095411
    Abstract: A fault-injection protection circuit includes a circuit under protection and a detection circuit. The detection circuit includes a detection cell having unequal pull-up capability and pull-down capability, and is arranged at a distance less than a laser spot diameter from the circuit under protection. The detection circuit is used to generate an alarm signal upon detecting a laser fault injection.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 21, 2024
    Applicant: eMemory Technology Inc.
    Inventor: Dung Le Tan Hoang
  • Publication number: 20230365677
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11753468
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11718668
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: August 8, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11649287
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: May 16, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11643462
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: May 9, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11634491
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: April 25, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11629187
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: April 18, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11591393
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 28, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Publication number: 20230026716
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 26, 2023
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Publication number: 20230020630
    Abstract: A pressure exchanger includes a rotor forming a duct from a first duct opening to a second duct opening. The pressure exchanger further includes a floating piston configured to move within the duct between the first duct opening and the second duct opening to prevent mixing of a first fluid and a second fluid while exchanging pressure between the first fluid and the second fluid. The pressure exchanger further includes a first adapter plate configured to prevent the floating piston from exiting the duct at the first duct opening and a second adapter plate configured to prevent the floating piston from exiting the duct at the second duct opening. The first adapter plate forms a first aperture that directs the first fluid to the first duct opening and the second adapter plate forms a second aperture that directs the second fluid to the second duct opening.
    Type: Application
    Filed: July 6, 2022
    Publication date: January 19, 2023
    Inventors: Omprakash Samudrala, Azam Mihir Thatte, Dung Le Tran, Michael Kjelson, Alexander Patrick Theodossiou, Matthew Joseph Pattom, Farshad Ghasripoor
  • Publication number: 20220275086
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: May 9, 2022
    Publication date: September 1, 2022
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Publication number: 20220259312
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11339219
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 24, 2022
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11325974
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 10, 2022
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11325975
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 10, 2022
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11303448
    Abstract: A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 12, 2022
    Assignee: Accenture Global Solutions Limited
    Inventors: Luca Schiatti, Anh-Dung Le, Giuseppe Giordano, Haris Pasic
  • Publication number: 20220056129
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: September 2, 2021
    Publication date: February 24, 2022
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Publication number: 20210395365
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian