Patents by Inventor Dung Le
Dung Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210324078Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: ApplicationFiled: June 22, 2021Publication date: October 21, 2021Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Publication number: 20210324077Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: ApplicationFiled: June 22, 2021Publication date: October 21, 2021Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Publication number: 20210155693Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: ApplicationFiled: December 22, 2020Publication date: May 27, 2021Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Publication number: 20210130463Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: ApplicationFiled: December 22, 2020Publication date: May 6, 2021Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Patent number: 10999382Abstract: A master oracle may receive an oracle network identifier for an oracle network. The master oracle may receive a plurality of data messages respectively generated by the oracles. The master oracle may verify, based on respective public keys for the oracles, that each of the data messages are digitally signed by a different corresponding one of the oracles. The master oracle may aggregate the data messages into an aggregated data message. The master oracle may digitally sign the aggregated data message with a private key and public key pair. The master oracle may transmit the aggregated data message to a participant node of a distributed ledger network. A smart contract stored on a blockchain may verify the aggregated data. After receiving and verifying the aggregated data message the smart contract may execute to perform operations based on the aggregated data message.Type: GrantFiled: December 10, 2019Date of Patent: May 4, 2021Assignee: Accenture Global Solutions LimitedInventors: Anh-Dung Le, Luca Schiatti, Giuseppe Giordano
-
Publication number: 20210107978Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: ApplicationFiled: December 22, 2020Publication date: April 15, 2021Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Publication number: 20210067339Abstract: A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.Type: ApplicationFiled: August 26, 2019Publication date: March 4, 2021Applicant: Accenture Global Solutions LimitedInventors: Luca Schiatti, Anh-Dung Le, Giuseppe Giordano, Haris Pasic
-
Patent number: 10934356Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.Type: GrantFiled: September 27, 2018Date of Patent: March 2, 2021Assignee: The Johns Hopkins UniversityInventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
-
Publication number: 20200396302Abstract: A master oracle may receive an oracle network identifier for an oracle network. The master oracle may receive a plurality of data messages respectively generated by the oracles. The master oracle may verify, based on respective public keys for the oracles, that each of the data messages are digitally signed by a different corresponding one of the oracles. The master oracle may aggregate the data messages into an aggregated data message. The master oracle may digitally sign the aggregated data message with a private key and public key pair. The master oracle may transmit the aggregated data message to a participant node of a distributed ledger network. A smart contract stored on a blockchain may verify the aggregated data. After receiving and verifying the aggregated data message the smart contract may execute to perform operations based on the aggregated data message.Type: ApplicationFiled: December 10, 2019Publication date: December 17, 2020Applicant: Accenture Global Solutions LimitedInventors: Anh-Dung Le, Luca Schiatti, Giuseppe Giordano
-
Patent number: 10847236Abstract: A memory cell includes a first anti-fuse element, a first select transistor, a second anti-fuse element, a second select transistor, and a sensing control circuit. The first anti-fuse element is coupled to an anti-fuse control line, and the first select transistor transmits a voltage between a first bit line and the first anti-fuse element according to a voltage on the word line. The second anti-fuse element is coupled to the anti-fuse control line. The second select transistor transmits a voltage between a second bit line and the second anti-fuse element according to the voltage on the word line. The sensing control circuit provides a discharging path to a system voltage terminal from the first select transistor or the second select transistor according to states of the first anti-fuse element and the second anti-fuse element during a read operation.Type: GrantFiled: August 29, 2019Date of Patent: November 24, 2020Assignee: eMemory Technology Inc.Inventor: Dung Le Tan Hoang
-
Publication number: 20200348240Abstract: Example embodiments of the present invention comprise an analyte sensing patch, comprising a substrate, and a sensing agent disposed on the substrate such that analyte can encounter the sensing agent through a side of the patch disposed adjacent the skin of a subject but not through a side of the patch disposed away from the skin of the subject. Example embodiments of the present invention comprise an analyte sensing patch, comprising a substrate, a sensing material disposed on the substrate in a first region thereof, an adhesive disposed on the substrate in a second region thereof, wherein the second region surrounds the first region, wherein the sensing agent undergoes a change in a discernible characteristic responsive to encounter with a predetermined analyte.Type: ApplicationFiled: July 15, 2020Publication date: November 5, 2020Inventor: Anh-Dung Le
-
Patent number: 10775206Abstract: A sensor hub includes a bit packer that receives sensor data from a plurality of sensors and bit packs the sensor data so that the sensor ID, time stamp and each axis of the measured data is stored contiguously. The bit packer may compress the sensor data by removing the sensor ID and/or the time stamp in the sensor data. The bit packed sensor data is stored in batching memory. A bit unpacker receives the sensor data from the batching memory and unpacks the sensor data, e.g., so that the sensor ID, time stamp and each axis of the measured data is stored in its own word. Additionally, the bit unpacker may decompress the bit packed sensor data by reinserting the sensor ID and/or time stamp in the sensor data.Type: GrantFiled: May 24, 2016Date of Patent: September 15, 2020Assignee: QuickLogic CorporationInventors: Rajasekaran Ramasubramanian, Dung Le
-
Patent number: 10751670Abstract: This invention provides a new high selectivity stable facilitated transport membrane comprising a polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane, a hydrophilic polymer inside the pores on the skin layer surface of the PES/PEO-Si blend support membrane; a hydrophilic polymer coated on the skin layer surface of the PES/PEO-Si blend support membrane, and metal salts incorporated in the hydrophilic polymer coating layer and the skin layer surface pores of the PES/PEO-Si blend support membrane, and methods of making such membranes. This invention also provides a method of using the high selectivity stable facilitated transport membrane comprising PES/PEO-Si blend support membrane for olefin/paraffin separations such as propylene/propane and ethylene/ethane separations.Type: GrantFiled: July 19, 2018Date of Patent: August 25, 2020Assignee: UOP LLCInventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
-
Patent number: 10746663Abstract: Example embodiments of the present invention comprise an analyte sensing patch, comprising a substrate, and a sensing agent disposed on the substrate such that analyte can encounter the sensing agent through a side of the patch disposed adjacent the skin of a subject but not through a side of the patch disposed away from the skin of the subject. Example embodiments of the present invention comprise an analyte sensing patch, comprising a substrate, a sensing material disposed on the substrate in a first region thereof, an adhesive disposed on the substrate in a second region thereof, wherein the second region surrounds the first region, wherein the sensing agent undergoes a change in a discernible characteristic responsive to encounter with a predetermined analyte.Type: GrantFiled: February 16, 2017Date of Patent: August 18, 2020Assignee: Dermatec LLCInventor: Anh-Dung Le
-
Patent number: 10741267Abstract: A memory cell includes a first anti-fuse element, a second anti-fuse element, and a selection circuit. The first anti-fuse element has a first terminal, a second terminal being floating, and a control terminal coupled to a first anti-fuse control line. The second anti-fuse element has a first terminal coupled to the first terminal of the first anti-fuse element, a second terminal being floating, and a control terminal coupled to a second anti-fuse control line. The selection circuit is coupled to the first terminal of the first anti-fuse element, the first terminal of the second anti-fuse element, and a source line. The selection circuit controls an electrical connection from the source line to the first terminal of the first anti-fuse element and the first terminal of the second anti-fuse element.Type: GrantFiled: June 9, 2019Date of Patent: August 11, 2020Assignee: eMemory Technology Inc.Inventor: Dung Le Tan Hoang
-
Patent number: 10692546Abstract: A memory circuit includes a memory cell, a first program driver, a second program driver, and a sensing amplifier. A method for operating the memory circuit includes, during a program operation of the memory cell, providing a program voltage to the memory cell, enabling the first program driver to drive the first local bit line to be at a low voltage, enabling the second program driver, disabling the first program driver, and enabling the sensing amplifier to verify whether the first memory cell has been programmed or not. The second program driver has a weaker driving ability than the first program driver.Type: GrantFiled: February 26, 2019Date of Patent: June 23, 2020Assignee: eMemory Technology Inc.Inventor: Dung Le Tan Hoang
-
Patent number: 10654004Abstract: This invention provides a new high flux reverse osmosis (RO) membrane comprising a nanoporous polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane (PES/PEO-Si) comprising a polyethylene oxide-polysilsesquioxane (PEO-Si) polymer and a polyethersulfone (PES) polymer, a hydrophilic polymer inside the pores on the skin layer surface of the polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a thin, nanometer layer of cross-linked polyamide on the skin layer surface of said polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a method of making such a membrane. This invention also provides a method of using the new high flux reverse osmosis membrane comprising nanoporous PES/PEO-Si blend support membrane for water purification.Type: GrantFiled: July 20, 2018Date of Patent: May 19, 2020Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
-
Patent number: 10650868Abstract: A sensing amplification circuit includes a sensing amplifier and a trigger control circuit. The sensing amplifier receives a data voltage and a reference voltage, and outputs a first data signal and a second data signal by comparing the data voltage and the reference voltage. The trigger control circuit includes a logic circuit and a set-reset latch. The logic circuit receives the first data signal and the second data signal, and changes a first control signal from a first voltage level to a second voltage level when one of the first data signal and the second data signal changes its state. The first set-reset latch receives the first control signal and a second control signal, and generates a trigger signal to enable the sensing amplifier when the second control signal changes state and disable the sensing amplifier when the first control signal changes state.Type: GrantFiled: February 21, 2019Date of Patent: May 12, 2020Assignee: eMemory Technology Inc.Inventors: Dung Le Tan Hoang, Hao-Chun Hu, Po-Hao Huang
-
Publication number: 20200126629Abstract: A memory cell includes a first anti-fuse element, a first select transistor, a second anti-fuse element, a second select transistor, and a sensing control circuit. The first anti-fuse element is coupled to an anti-fuse control line, and the first select transistor transmits a voltage between a first bit line and the first anti-fuse element according to a voltage on the word line. The second anti-fuse element is coupled to the anti-fuse control line. The second select transistor transmits a voltage between a second bit line and the second anti-fuse element according to the voltage on the word line. The sensing control circuit provides a discharging path to a system voltage terminal from the first select transistor or the second select transistor according to states of the first anti-fuse element and the second anti-fuse element during a read operation.Type: ApplicationFiled: August 29, 2019Publication date: April 23, 2020Inventor: Dung Le Tan Hoang
-
Publication number: 20200051651Abstract: A memory cell includes a first anti-fuse element, a second anti-fuse element, and a selection circuit. The first anti-fuse element has a first terminal, a second terminal being floating, and a control terminal coupled to a first anti-fuse control line. The second anti-fuse element has a first terminal coupled to the first terminal of the first anti-fuse element, a second terminal being floating, and a control terminal coupled to a second anti-fuse control line. The selection circuit is coupled to the first terminal of the first anti-fuse element, the first terminal of the second anti-fuse element, and a source line. The selection circuit controls an electrical connection from the source line to the first terminal of the first anti-fuse element and the first terminal of the second anti-fuse element.Type: ApplicationFiled: June 9, 2019Publication date: February 13, 2020Inventor: Dung Le Tan Hoang